
Introduction to Graph Theory — Sheet 4 v2

Most of these problems are elementary, meaning that they do not require any
deep knowledge of graph theory or of any other area of mathematics. A few,
however, involve some ingenious little tricks which might be new to you. For
these we have given hints, sometimes more than one. The best way to attempt
these questions is first to give yourself some time to work out the problem
yourself – you might even find a better solution than that suggested by the
hint. After this, look at the hint(s) (even if you think you have solved the
problem, compare your method with the hint). Having spent some time trying
hard to solve the problem yourself, seeing the hint will teach you much more
than just going straight to it.

If you lack time, try doing first those which have two asterisks. We shall try,
if we have time, to cover in class all those questions with at least one asterisk.

1. **Find orderings of the graph of the cube for which the greedy algorithm
requires 2, 3, and 4 colours respectively.

2. **The graph Mr, r ≥ 2, is obtained from the cycle graph C2r by adding
extra edges joining each pair of opposite vertices. Show that

(a) Mr is bipartite (hence χ(Mr) = 2) when r is odd;

(b) χ(Mr) = 3 when r is even and r 6= 2;

(c) χ(M2) = 4.

3. ** Using the full Brooks’s Theorem, show that the Petersen graph has
chromatic number 3.

4. **Show that if G is an r-regular graph with n vertices then

χ(G) ≥ n

n− r .

[Hint: Let C1, . . . , Cχ be the colour classes of a χ-colouring of G. Then
n =

∑ |Ci|. Can you see that |Ci| ≤ n− r?]

5. *(More difficult.) Show that if G is a simple graph on n vertices and m
edges then

χ(G) ≥ n2

(n2 − 2m)
.

[Hint: Let C(vi) denote the colour class containing vertex vi. As in the
hint to Problem 4, |C(vi)| ≤ n−deg(vi). Also,

∑n
1 (n−deg(vi)) = n2−2m,

therefore
∑n

1 |C(vi)| ≤ n2 − 2m. If the sizes of the χ distinct classes are
s1, . . . , sχ, this gives

∑χ
1 s

2
i ≤ n2 − 2m. Use the inequality (

∑χ
1 si)

2 ≤
χ
∑χ

1 s
2
i . This last inequality can be obtained using the Cauchy-Schwarz

Inequality which you might have encountered in an analysis course.]
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6. *Show that if G has the property that any two odd cycles have at least a
vertex in common then χ(G) ≤ 5.

[Hint: Suppose for contradiction that the chromatic number of G is more
than 5. Let C1, . . . , C6 be six distinct colour classes. Then there must be
an odd cycle amongst the vertices of C1, C2, C3 (why?). Similarly, there
must be an odd cycle amongst the vertices of C4, C5, C6. But this gives a
contradiction.]

[Alternative hint: Let C be a shortest odd cycle in G; C cannot have
any chord (why?). So we can colour the vertices of C with three colours.
Removing the vertices of C from G leaves us with a graph which we can
be coloured with another 2 colours (why?). Combine the two colourings.]

7. (More difficult) Let χ = χ(G) and χ = χ(G).

(a) **Prove that χχ ≥ n;
[Hint: Suppose that a vertex v has colour i in a χ-colouring of G and
colour j in a χ-colouring of G. Let v be given the colour (i, j). Show
that this new colouring is a proper colouring of Kn.]
[Alternative hint: As in Question 4, let C1, . . . , Cχ be the colour
classes of a χ-colouring of G. A moment’s thought should convince
you that |Ci| ≤ χ. Then proceed as in Question 4.]

(b) *Deduce that χ+ χ ≥ 2
√
n;

(c) Use induction to show that χ+ χ ≤ n+ 1;

(d) Deduce that χχ ≤ 1
4 (n2 + 2n+ 1).

*Give examples to show that all these bounds can be attained.
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