Section B

4. (a) Give a sketch of the proof of Frucht's Theorem:

If Γ is a finite group, then there exists a graph G such that $\operatorname{Aut}(G) \simeq \Gamma$.
(b) Let A_{n} be the alternating group acting on the set $N=\{1,2, \ldots, n\}$ with $n>2$. Show that there is no graph G with $V(G)=N$ and such that the action of the permutation group $\operatorname{Aut}(G)$ on $V(G)$ is equivalent to that of A_{n}.
(c) Give a sketch of the proof of Bouwer's Theorem:

Let Γ be a group of permutations acting on the set X. Then there exists a graph G such that $X \subseteq V(G), \operatorname{Aut}(G) \simeq \Gamma, X$ is invariant under the action of $\operatorname{Aut}(G)$, and the action of $\operatorname{Aut}(G)$ on X is equivalent to that of Γ.
(d) It is required to construct two graphs G_{1}, G_{2} with the following properties. Both graphs have endvertices; the set of endvertices in G_{i} is denoted by X_{i}. Moreover,

- The endvertices of G_{1} are all mutually pseudosimilar.
- The graph G_{2} is not reconstructible from the collection of subgraphs $G_{2}-v, v \in X_{2}$.

For only one of the two graphs G_{1}, G_{2}, explain how, with the aid of Bouwer's Theorem, the graph G_{i} can be constructed if it is possible to construct a permutation group Γ_{i} acting on X_{i} in a specified manner. [You should state clearly what conditions the action of Γ_{i} on X_{i} must satisfy, but you do not need to construct a specific example of a permutation group with these conditions.]
5. (a) Show that if H is a Cayley graph then there is a subgroup \mathcal{H} of $\operatorname{Aut}(H)$ that acts regularly on $V(H)$.

Now let G be a graph on at least five vertices that is edge-transitive but not bipartite and whose vertices have odd degree. Let $H=L(G)$ be the linegraph of G. Show that H is a vertex-transitive graph that is not a Cayley graph.
[In the proof you may use the relevant theorems of Whitney and Tutte without proving them, but their use must be clearly indicated.]
(b) Let Γ be a finite group and let a, b be two distinct elements of Γ of order 3 and such that $\Gamma=\langle a, b\rangle$. Consider the Cayley graph $G=\operatorname{Cay}(\Gamma, S)$, where $S=\left\{a, b, a^{-1}, b^{-1}\right\}$. Show that any two different 3 -cycles in G have at most a common vertex.
[HINT: Start off by assuming, for contradiction, that there are two 3-cycles with a common edge and that, without loss of generality, this common edge is $\{1, a\}$.]
6. Let G be a graph on n vertices and $m \geq n$ edges. In the sequel, for any graph $H,\binom{G}{H}$ denotes the number of subgraphs of G isomorphic to H. Let C_{t} denote the cycle on t vertices. Prove that

$$
\binom{G}{C_{n}}=\binom{m}{n}-\sum_{t=3}^{n-1}\binom{G}{C_{t}} \cdot\binom{m-t}{n-t}+\sum_{X} b_{X} \cdot\binom{G}{X},
$$

where the last summation ranges over all isomorphism types X of graphs with n edges, no isolated vertices, and containing at least two cycles, and where $b_{X}=($ number of cycles in $X)-1$.

Deduce that $\binom{G}{C_{n}}$ is reconstructible from the deck of vertex-deleted subgraphs of G.

Indicate briefly how this result gives that the characteristic polynomial of G is reconstructible.
[Kelly's Lemma may be used without proof.]

