MA271—June 1994

1. The sequence $<a_{n}>$ is defined by $a_{0}=1, a_{1}=0$ and the recurrence relation

$$
n a_{n}+a_{n-1}+a_{n-2}=f(n) \quad(n \geq 2)
$$

where the function f is given by $f(2 n)=0$ and $f(2 n+1)=(-1)^{n} /\left(n!2^{n}\right)$.
Let $g(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the generating function for this sequence. Prove that

$$
g^{\prime}(x)+(1+x) g(x)=e^{-x^{2} / 2}
$$

Solve this differential equation and hence find a_{n}.
2. In this question, $p(n \mid \mathcal{P})$ denotes the number of partitions of the positive integer n having property \mathcal{P}.
(i) Show that

$$
\begin{aligned}
& p(n \mid \text { largest part }=m \text { and number of parts }=k) \\
= & p(n \mid \text { largest part }=k \text { and number of parts }=m) .
\end{aligned}
$$

Deduce that

$$
\begin{aligned}
& p(n-m \mid \text { number of parts }=k-1, \text { no part greater than } m) \\
= & p(n-k \mid \text { number of parts }=m-1, \text { no part greater than } k) .
\end{aligned}
$$

(ii) Show that

$$
\begin{aligned}
& p\left(n \mid \text { no part occurs more than } 2^{k+1}-1 \text { times }\right) \\
= & p\left(n \mid \text { no multiple of } 2^{k} \text { occurs more than once as a part }\right) .
\end{aligned}
$$

(iii) Let

$$
e_{n}=p(n \mid \text { even number of parts, all distinct })
$$

and

$$
o_{n}=p(n \mid \text { odd number of parts, all distinct })
$$

Write down an expression for $e_{n}-o_{n}$ and show how this relationship can be used to obtain a recursive method for computing $p(n)$, the number of partitions of n.
3. (a) Suppose $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets. Show that

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{i=1}^{n}(-1)^{i+1} \alpha_{i}
$$

where α_{i} denotes the sum of the cardinalities of all the intersections of the sets taken i at a time.
(b) A box contains n white balls and m black balls. A set of k balls is to be chosen from the box. Let the white balls be $w_{1}, w_{2}, \ldots, w_{n}$ and let A_{j} be the set of all sets of k balls which contain w_{j}. By counting in two ways the number of sets of k black balls which can be chosen, prove that

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{m+n-i}{k-i}= \begin{cases}\binom{m}{k} & \text { if } m \geq k \\ 0 & \text { if } m<k\end{cases}
$$

(c) Let $S(n, k)$ denote the number of partitions of an n-set into k parts. Show that the number of surjections from an n-set to a k-set is $k!S(n, k)$. Show that

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

