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Answer THREE questions

1. Let G be a finite group acting on a finite set X. For x ∈ X let G(x) and
Gx denote, respectively, the orbit and the stabiliser of x. Prove that

|G| = |G(x)| · |Gx|.

Now suppose that G is a p-group, and let X1 be the set of fixed points of
this action. Show that

|X1| = |X| mod p.

2. Let G be a finite group acting on a finite set X. Let F (g) be the set of
elements of X which are fixed by the permutation ĝ of X corresponding to
g ∈ G under this action. Prove that the number of orbits of X under this
action equals

1
|G|

∑

g∈G

|F (g)|.

Find the number of distinct necklaces which can be made from six beads
using any of the three colours red, green or blue, if flipping over of the
necklace is allowed.

3. State carefully the three theorems of Sylow.
Show that a group of order 56 cannot be simple.
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4. (a) Define the action of conjugacy of a group G on itself. Which subgroups
of G are mapped onto themselves by this action?

Write down the class equation, explaining clearly all the terms involved.

Show that if G is a p-group then Z(G)| ≥ p.

(b) Find the conjugacy classes of the two dihedral groups D5 and D6. Can
you give some geometric significance to your results?
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