UNIVERSITY OF MALTA

FACULTY OF SCIENCE
Department of Mathematics
B.Sc. (Hons.) II Year

June Session 2002
MA112 Groups (1.5 credits)
20 June 2002 1415-1615

Answer THREE questions

1. Let G be a finite group acting on a finite set X. For $x \in X$ let $G(x)$ and G_{x} denote, respectively, the orbit and the stabiliser of x. Prove that

$$
|G|=|G(x)| \cdot\left|G_{x}\right|
$$

Now suppose $|X| \leq 90$ and suppose G is a 7 -group acting on X and having exactly one fixed point. Suppose also that H is an 11-group acting on X and that the action of H has no fixed points. Find $|X|$.
2. (a) Let G be a finite group, $H \leq G$ and X the set of left cosets of H in G. Show that there is an action of G on X such that the kernel of this action is contained in H.

Suppose G is a group of order 70 and suppose also that G contains a subgroup of order 14 . Show that G cannot be simple.
(b) State carefully the three Sylow Theorems.

Prove that a group of order 992 cannot be simple.
3. Let G be a finite group acting on a finite set X. For each $g \in G$, let $F(g)$ denote the set $\{x \in X: \hat{g}(x)=x\}$, where \hat{g} denotes the permutation of X corresponding to g under the action.

Prove that the number of orbits in X under this action is given by

$$
\frac{1}{|G|} \sum_{g \in G}|F(g)| .
$$

[The Orbit-Stabiliser Theorem may be assumed without proof.]

A necklace is to be made from 9 beads strung on a circular wire; 6 of these beads are to be coloured white and 3 beads are to be coloured black. Ignoring the positioning of the fastening, how many essentially different necklaces can be made this way?
4. Obtain the class equation for a finite group, explaining clearly the terms conjugacy, centre and conjugacy class. Explain also why the order of a conjugacy class divides the order of the group.

Let G be a group of order 24 with centre consisting only of the identity element. Show that G has a conjugacy class of size 3 , and deduce that G has a subgroup of order 8 .
[You may use the Orbit-Stabiliser Theorem in this question, but Sylow's Theorems may not be used.]

