UNIVERSITY OF MALTA FACULTY OF SCIENCE / I.T. BOARD OF STUDIES Department of Mathematics B.Sc.,B.Ed.,/ B.Sc.(I.T.) Year II June Session 2002

MA141 Discrete Methods

8 June 2002

MA141 (Faculties of Science, Education) students (1.5 credits): Answer THREE questions. Time allowed TWO hours.

MA141 (I.T. Board) students (1 credit): Answer TWO questions. Time allowed ONE AND A HALF hours.

1. (a) Let A_1, A_2, \ldots, A_n be finite sets, and let α_i denote the sum of the cardinalities of the intersections of the sets taken *i* at a time. Prove that

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n \alpha_i (-1)^{i+1}.$$

(b) How many integers are there in the range 1 to 999 (inclusive) which are not divisible by any of 2, 5 or 23?

2. (a) Write down the coefficient of x^k in the expansion of $(1 - x)^{-n}$ in ascending powers of x.

(b) Find the coefficient of x^{20} in each of the following products:

(i) $(x^2 + x^3 + x^4 + \ldots)^4$

(ii)
$$(x^2 + x^3 + \ldots + x^{12})^4$$

(iii) $(x^2 + x^3 + x^4 + ...)^3 (x + x^2 + ... + x^6)$

3. (a) A loan of Lm3000 is taken from a bank. After a year, and at the end of every subsequent year, a repayment of LmP is effected. Moreover, at the end of every year the bank charges interest at the rate of 1 per cent of the amount owed during that year.

Let A_n denote the amount owed to the bank at the end of the *n*th year (therefore $A_0 = 3000$). Obtain and solve a recurrence relation for A_n .

(b) Solve the recurrence relation

$$a_{n+2} - 5a_{n+1} + 6a_n = n.5^n \qquad (n \ge 0)$$

given that $a_0 = a_1 = 0$.

4. (a) Let p(n) denote the number of partitions of the positive integer n and let $p(n|\mathcal{P})$ denote the number of partitions satisfying a given property \mathcal{P} .

- (i) Write down the generating function for p(n).
- (ii) Let $k \ge 1$ be fixed, let \mathcal{P}_1 be the property "No part in the partition appears more than k times" and let \mathcal{P}_2 be the property "No part in the partition is divisible by k + 1". Prove that $p(n|\mathcal{P}_1) = p(n|\mathcal{P}_2)$.

(b) Let S(n, k) denote the number of ways of partitioning an *n*-set into *k* parts. Write down a recurrence relation for S(n, k) and use this relation to find all values of S(n, k) for $1 \le k \le n \le 5$.

How many ways are there to distribute 5 distinguishable balls amongst 6 distinguishable boxes such that exactly three of the boxes are nonempty? [Hint: For each choice of the three nonempty boxes, each distribution is a surjection from a 5-set to a 3-set.]