UNIVERSITY OF MALTA FACULTY OF SCIENCE / I.T. BOARD OF STUDIES
 Department of Mathematics
 B.Sc.,B.Ed.,/ B.Sc.(I.T.) Year II
 June Session 2002

MA141 Discrete Methods
8 June 2002
MA141 (Faculties of Science, Education) students (1.5 credits):
Answer THREE questions. Time allowed TWO hours.
MA141 (I.T. Board) students (1 credit):
Answer TWO questions. Time allowed ONE AND A HALF hours.

1. (a) Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets, and let α_{i} denote the sum of the cardinalities of the intersections of the sets taken i at a time. Prove that

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{i=1}^{n} \alpha_{i}(-1)^{i+1}
$$

(b) How many integers are there in the range 1 to 999 (inclusive) which are not divisible by any of 2,5 or 23 ?
2. (a) Write down the coefficient of x^{k} in the expansion of $(1-x)^{-n}$ in ascending powers of x.
(b) Find the coefficient of x^{20} in each of the following products:
(i) $\left(x^{2}+x^{3}+x^{4}+\ldots\right)^{4}$
(ii) $\left(x^{2}+x^{3}+\ldots+x^{12}\right)^{4}$
(iii) $\left(x^{2}+x^{3}+x^{4}+\ldots\right)^{3}\left(x+x^{2}+\ldots+x^{6}\right)$
3. (a) A loan of Lm3000 is taken from a bank. After a year, and at the end of every subsequent year, a repayment of LmP is effected. Moreover, at the end of every year the bank charges interest at the rate of 1 per cent of the amount owed during that year.

Let A_{n} denote the amount owed to the bank at the end of the nth year (therefore $A_{0}=3000$). Obtain and solve a recurrence relation for A_{n}.
(b) Solve the recurrence relation

$$
a_{n+2}-5 a_{n+1}+6 a_{n}=n .5^{n} \quad(n \geq 0)
$$

given that $a_{0}=a_{1}=0$.
4. (a) Let $p(n)$ denote the number of partitions of the positive integer n and let $p(n \mid \mathcal{P})$ denote the number of partitions satisfying a given property \mathcal{P}.
(i) Write down the generating function for $p(n)$.
(ii) Let $k \geq 1$ be fixed, let \mathcal{P}_{1} be the property "No part in the partition appears more than k times" and let \mathcal{P}_{2} be the property "No part in the partition is divisible by $k+1$ ". Prove that $p\left(n \mid \mathcal{P}_{1}\right)=p\left(n \mid \mathcal{P}_{2}\right)$.
(b) Let $S(n, k)$ denote the number of ways of partitioning an n-set into k parts. Write down a recurrence relation for $S(n, k)$ and use this relation to find all values of $S(n, k)$ for $1 \leq k \leq n \leq 5$.

How many ways are there to distribute 5 distinguishable balls amongst 6 distinguishable boxes such that exactly three of the boxes are nonempty? [Hint: For each choice of the three nonempty boxes, each distribution is a surjection from a 5 -set to a 3 -set.]

