# UNIVERSITY OF MALTA 

FACULTY OF SCIENCE
Department of Mathematics
B.Sc. (Hons.) II Year

June Session 2003
MAT2104 Groups (2 credits)
2 June 2003
0915-1145

## Answer FOUR questions

1. Let $G$ be a group and $H$ a subgroup of $G$. Let $[G: H]=m$ and let $X$ be the set of all left cosets of $H$ in $G$.

Show that there is an action of $G$ on $X$ whose kernel $K$ is contained in $H$.

Show also that

$$
\frac{|G|}{|K|} \text { divides } m!\text {. }
$$

Suppose that $|G|=1001$ and $|H|=143$. Prove that $H$ is a normal subgroup of $G$.
[If required, the First Isomorphism Theorem may be quoted without proof.]
2. Let $G$ be a finite group. Write down the class equation for $G$, explaining clearly all the terms involved and the associated group action.

In the sequel let $G$ be a $p$-group. Prove that the centre $Z(G)$ of $G$ is nontrivial. Show that if $G$ acts on a set $X$, and $X_{1}$ is the set of fixed points of this action, then

$$
\left|X_{1}\right|=|X| \bmod p
$$

Deduce that if $H$ is a nontrivial normal subgroup of $G$ then $|H \cap Z(G)| \geq p$. [Hint. For the last part, consider the action of conjugacy on $X=H$.]
[The Orbit-Stabiliser Theorem may be quoted without proof.]
3. State Sylow's Theorems.

Show that a group of order 56 cannot be simple.
Let $G$ be a group of order 110. How many elements of order 11 are there in $G$ ? What are the possible numbers of elements of order 5 in $G$ ? Give
two examples of groups of order 110 having different numbers of elements of order 2.
4. Let $G$ be a finite group acting on a finite set $X$. For each $g \in G$, let $F(g)$ denote the set $\{x \in X: \hat{g}(x)=x\}$, where $\hat{g}$ denotes the permutation of $X$ corresponding to $g$ under the action.

Prove that the number of orbits in $X$ under this action is given by

$$
\frac{1}{|G|} \sum_{g \in G}|F(g)| .
$$

[The Orbit-Stabiliser Theorem may be assumed without proof.]
A necklace is to be made from 9 beads strung on a circular wire; 6 of these beads are to be coloured white and 3 beads are to be coloured black. Ignoring the positioning of the fastening, how many essentially different necklaces can be made this way?
5. (a) Let $S_{n}$ be the group of all permutations of the set $\{1,2, \ldots, n\}$. For $\alpha \in S_{n}$, let $c(\alpha)$ denote the number of cycles of $\alpha$ when it is written as a product of disjoint cycles. Let $\beta \in S_{n}$ be a transposition. Give, with proof, the possible values of $c(\beta \alpha)$ in terms of $c(\alpha)$. Deduce from this that if $\alpha$ is written as a product of transpositions then the number of transpositions is always either odd or even.
(b) Let $G$ be a subgroup of $S_{n}$, and let $H$ be the subgroup of $G$ consisting of all the even permutations in $G$. Show that either $H=G$ or else $|H|=|G| / 2$. (Hint: Define a suitable surjective homomorphism from $G$ to $\{1,-1\}$ and find the kernel of this homomorphism. You may use the First Isomorphism Theorem, if required.)

Deduce that $A_{n}$, the group of all even permutations in $S_{n}$, has order equal to $\left|S_{n}\right| / 2$.

