UNIVERSITY OF MALTA
FACULTY OF SCIENCE
Department of Mathematics
B.Sc.(Hons.) Year IV

June 2002 Examination Session
Mathematics Elective Paper I
21 June 2002
0900-1200
Answer FOUR questions: TWO questions from each section

Section A: MA343 Graph Theory and Combinatorics I

1. (a) Let p be a positive integer, and let $r(p, p)$ be the least value of n such that any colouring of the edges of the complete graph K_{n} with colours red and blue contains either a red or a blue K_{p}. Show that

$$
r(p, p)>2^{p / 2}
$$

(b) Let P_{3} be the path on three edges and C_{4} the cycle on four edges, and let $r\left(P_{3}, C_{4}\right)$ denote the least value of n such that any colouring of the edges of the complete graph K_{n} with colours red and blue contains either a red P_{3} or a blue C_{4}. Show that

$$
r\left(P_{3}, C_{4}\right)=5
$$

2. If G is the group of permutations of $N=\{1,2, \ldots, n\}$, then $G^{[2]}$ denotes the group of actions induced on ordered distinct pairs of N; that is, to each $g \in G$ there exists $\hat{g} \in G^{[2]}$ such that $\hat{g}((i, j))=(g(i), g(j))$.

Suppose G is S_{4}, that is, the group of all permutations of $\{1,2,3,4\}$. Find the cycle index of $G^{[2]}$ given that the cycle index of G is

$$
\frac{1}{24}\left(x_{1}^{4}+8 x_{1} x_{3}+6 x_{1}^{2} x_{2}+3 x_{2}^{2}+6 x_{4}\right) .
$$

Hence obtain the number of nonisomorphic digraphs on four vertices. ["Burnside's" Counting Theorem may be used without proof.]
3. Let (X, \mathcal{B}) be a 2 -design with $|X|=v$, and b blocks of size k each. Let λ be the number of blocks containing any given pair of elements and suppose that each element is contained in exactly r blocks. Show that

$$
b k=v r
$$

and

$$
r(k-1)=\lambda(v-1) .
$$

Obtain also Fisher's inequality, $v \leq b$. [You may assume that the design is non-trivial, that is, $r>\lambda$.]

Deduce that there cannot exist a design with $v=25, k=10$ and $\lambda=3$.
4. (a) The code C consists of a set of words of length n taken from the alphabet \mathbb{Z}_{2}. Suppose that all codewords are equally likely to be transmitted and that each digit has a probability $p<1 / 2$ of being transmitted wrongly, independently of the other digits. A transmitted word will be decoded either as the codeword nearest (in Hamming distance) to the one received (nearest neighbour decoding) or as the word most likely to have been transmitted, given the one received (most likelihood decoding). Show that these two methods are equivalent under the above assumptions.

Comment briefly on how reasonable in practice these assumptions are.
(b) Show that a code is e-error-correcting if and only if the minimum distance between any two codewords is at least $2 e+1$.
(c) Suppose that the code C consists of a set of words of length n taken from an alphabet F of size q and that the minimum distance between any two codewords is δ. Show that

$$
|C| \geq \frac{q^{n}}{\sum_{i=0}^{\delta-1}\binom{n}{i}(q-1)^{i}}
$$

and that if C is e-error-correcting then

$$
|C| \leq \frac{q^{n}}{\sum_{i=0}^{e}\binom{n}{i}(q-1)^{i}}
$$

