UNIVERSITY OF MALTA
 FACULTY OF SCIENCE / I.T. BOARD OF STUDIES

Department of Mathematics

B.Sc.(Hons) Year I / B.Sc.(Hons) I.T. Year II
May/June Session, 2005

MAT1401 Discrete Methods (4 ECTS credits)
May 2005
Answer FOUR questions. Time allowed: 2 hours 30 minutes.

1. Solve the following recurrence relation

$$
a_{n+2}-5 a_{n+1}+6 a_{n}=K^{n} \quad(n \geq 0)
$$

given that $a_{0}=a_{1}=0$, in the two cases: (i) $K=3$, (ii) $K=4$.
2. (a) Let $A_{1}, A_{2}, \ldots, A_{n}$ denote finite sets and let $\alpha_{i}(1 \leq i \leq n)$ denote the sum of the cardinalities of the intersections of the sets taken i at a time. Write down, and prove, the Inclusion-Exclusion Formula giving $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|$ in terms of the α_{i}.
(b) Two integers are said to be relatively prime if they have no common factors except for the factor 1 . How many positive integers less than or equal to 500 are relatively prime to both 13 and $17 ?$
3. (a) Use generating functions to find the number of ways in which a sum of 20 can be obtained when 8 distinct dice are rolled.
(b) Let $S(n, k)$ denote the number of partitions of an n-set into k parts. Show that
(i) $S(n, 1)=S(n, n)=1$;
(ii) $S(n, k)=S(n-1, k-1)+k S(n-1, k)$;
(iii) $S(n, 2)=2^{n-1}-1 \quad(n \geq 2)$.
[Hint: For (iii) use induction on n.]
4. Let $p(n)$ denote the number of partitions of the positive integer n and let $p(n \mid \mathcal{P})$ denote the number of partitions of n having property \mathcal{P}. Write down the generating functions of each of the following
(i) $p(n)$;
(ii) $p(n \mid$ all parts are distinct);
(iii) $p(n \mid$ all parts are odd);
(iv) $p(n \mid$ no part appears more than twice);
(v) $p(n \mid$ no part is a multiple of 3$)$.

Show that

$$
p(n \mid \text { all parts are distinct })=p(n \mid \text { all parts are odd })
$$

and

$$
p(n \mid \text { no part appears more than twice })=p(n \mid \text { no part is a multiple of } 3) .
$$

5. A loan of Lm3000 is taken from a bank. After a year, and at the end of every subsequent year, a repayment of LmP is effected. Moreover, at the end of every year the bank charges interest at the rate of 1 per cent of the amount owed during that year.

Let A_{n} denote the amount owed to the bank at the end of the nth year (therefore $A_{0}=3000$). Obtain and solve a recurrence relation for A_{n}.

How much should the repayment amount P be equal to if the loan (including all interests) is to be repaid by the end of the third year?

