UNIVERSITY OF MALTA
FACULTY OF SCIENCE
Department of Mathematics
B.Sc.(Hons.) Year IV

June 2004 Examination Session
Mathematics Elective Paper II - MAT4403
14 June 2004
0900-1200
Answer FIVE questions with at least TWO questions from each section

Section A: Graph Theory and Combinatorics I

1. (a) Let C be a q-ary code of length n and minimum Hamming distance δ. Prove the Singleton Bound, namely that

$$
|C| \leq q^{n-\delta+1}
$$

(b) Let C be a binary linear code of length n. Suppose also that C is to be used only for error-detection, that is, if a word is received which is not in C then the receiver asks for retransmission. Therefore an error is undetected if and only if the received word \mathbf{y} is a codeword different from the codeword x which was sent.

Why is it that the error pattern \mathbf{e} in this case is itself a non-zero codeword?
Let A_{i} denote the number of codewords in C having weight i. Suppose that any digit of a codeword can be sent incorrectly with probability p, independently of the other digits. Deduce that the probability of an incorrect message being received undetected is given by

$$
P_{\text {undetect }}(C)=\sum_{i=1}^{n} A_{i} p^{i}(1-p)^{n-i} .
$$

(c) Let the code C in (b) above have generator matrix

$$
G=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Find C and show that

$$
P_{\text {undetect }}(C)=p^{2}-p^{4} .
$$

2. (a) Let (X, \mathcal{B}) be a 2-design for which $|X|=v$, the size of each block is k, and every 2 -set of X appears in exactly λ blocks.

Let $x_{0} \in X$ and suppose that x_{0} occurs in exactly r blocks. By counting in two ways the number of pairs $\left\{x_{0}, y\right\}$, for all $y \in X$, which appear together in the same block, show that

$$
r(k-1)=\lambda(v-1) .
$$

Deduce that r is independent of the element x.
Assuming that the design has b blocks, show that $b k=v r$ and $\lambda \leq r$. (For the inequality, compare k and v.)
(b) Find the non-zero squares in the field \mathbf{Z}_{11} and show that they form a difference set. Use this set to construct a symmetric design, and give the parameters of this design.
3. (a) Suppose that the edges of an infinite complete graph G are coloured red or blue. Show that G contains an infinite complete subgraph whose edges are all of the same colour.

Deduce that an infinite sequence of real numbers contains an infinite monotonic subsequence.
(b) Marbles of $n+1$ different colours are placed in n jars. There are $n+1$ marbles of each colour.

Show that, for each colour, there is a jar containing a pair of marbles of that colour. Deduce that there is a jar containing two pairs of marbles from two different colours.
4. (a) Let $s=\left(\begin{array}{ll}1 & 2 \\ 3\end{array} n\right)$ be the cyclic permutation of the set $D=$ $\{1,2, \ldots, n\}$. Show that the cycles of s^{i} are all of the same length. Hence obtain, in terms of Euler's ϕ-function, the cycle index of the cyclic group of permutations of D generated by s.
(b) Let p be a prime number and let r and t be positive integers. Prove that p^{t} divides

$$
r^{p^{t}}+\sum_{i=1}^{t} p^{i-1}(p-1) r^{p^{t-i}}
$$

[Hint. Any form of "Burnside's" Counting Lemma may be used without proof, but its use must be clearly indicated.]

