UNIVERSITY OF MALTA

FACULTY OF SCIENCE

Department of Mathematics
B.Sc.(Hons.) Year IV

June 2005 Examination Session
Mathematics Elective Paper II - MAT4403
June 2005
0900-1200
Answer FIVE questions with at least TWO questions from each section

Section A: Graph Theory and Combinatorics I

1. (a) Let $r(p)$ denote the smallest value of N such that any 2-colouring of the edges of the complete graph K_{N} must contain a monochromatic K_{p}. Show that

$$
r(p)>2^{p / 2}
$$

(b) Let r_{n} denote the generalised Ramsey number $r\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ with $p_{i}=3$ for all i, that is, r_{n} denotes the smallest value of N such that any colouring of the edges of K_{N} with n colours must contain a monochromatic triangle. Show that

$$
r_{n} \leq n\left(r_{n-1}-1\right)+2
$$

and deduce that

$$
r_{n} \leq\lfloor n!e\rfloor+1 .
$$

[Recall that $r_{2}=6$.]
2. (a) Let (X, \mathcal{B}) be a 2 -design with $|X|=v$, and b blocks of size k each. Let r be the number of blocks containing any single element and let λ be the number of blocks containing any given pair of elements. Prove that:
(i) $b k=v r$;
(ii) $r(k-1)=\lambda(v-1)$.
(b) Let C be a linear, perfect e-error-correcting binary code of length n. Let \mathcal{B} be the collection of all codewords of weight $2 e+1$. Let each codeword c in \mathcal{B} correspond to the subset A of $\{1,2, \ldots, n\}$ defined by $i \in A$ if and only if $c_{i}=1$.

Show that this family of subsets gives an $(e+1)$-design with $\lambda_{e+1}=1$. [Hint. The spheres $\left\{S_{e}(c): c \in C\right\}$ partition \mathbb{Z}_{2}^{n} since C is perfect.]
3. If G is the group of permutations of $N=\{1,2, \ldots, n\}$, then let $G^{[2]}$ denote the group of actions induced on ordered distinct pairs of N; that is, to each $g \in G$ there exists $\hat{g} \in G^{[2]}$ such that $\hat{g}((i, j))=(g(i), g(j))$.

Suppose G is S_{4}, that is, the group of all permutations of $\{1,2,3,4\}$. Find the cycle index of $G^{[2]}$ given that the cycle index of G is

$$
\frac{1}{24}\left(x_{1}^{4}+8 x_{1} x_{3}+6 x_{1}^{2} x_{2}+3 x_{2}^{2}+6 x_{4}\right) .
$$

Hence obtain the number of nonisomorphic digraphs on four vertices. ["Burnside's" Counting Theorem may be used without proof.]
4. (a) Let C be a q-ary code of length n and minimum Hamming distance δ. Prove the Singleton Bound, namely that

$$
|C| \leq q^{n-\delta+1} .
$$

Now let C be a linear code and let ω be the minimum weight amongst all nonzero codewords in C. Show that

$$
\omega=\delta
$$

(b) Suppose that the linear code C is constructed as follows. A finite field $F=\left\{u_{1}, u_{2} \ldots, u_{q}\right\}$ is given and S is the space of all polynomials of degree at most $k-1$ with coefficients in F. The code C consists of all codewords

$$
\left(p\left(u_{1}\right), p\left(u_{2}\right), \ldots, p\left(u_{q}\right)\right)
$$

for all p in S.
Find the minimum distance in C (you may assume that any p in S has at most $k-1$ zeros) and the dimension of C (use a basis for S; you may assume that

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & u_{1} & u_{2} & \ldots & u_{k-1} \\
1 & u_{1}^{2} & u_{2}^{2} & \ldots & u_{k-1}^{2} \\
\vdots & & & & \\
1 & u_{1}^{k-1} & u_{2}^{k-1} & \ldots & u_{k-1}^{k-1}
\end{array}\right)
$$

is not zero.)
Show that C attains the Singleton Bound.

