UNIVERSITY OF MALTA
 FACULTY OF SCIENCE / I.T. BOARD OF STUDIES
 Department of Mathematics
 B.Sc.,B.Ed.,/ B.Sc.(I.T.) Year II
 May Session 2001

MA141 Discrete Methods
May 2001
MCU202 Discrete Methods
MA141 (Faculties of Science, Education) students:
Answer THREE questions. Time allowed TWO hours.
MCU202 (I.T. Board) students:
Answer TWO questions. Time allowed ONE AND A HALF hours.

1. (a) Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets, and let α_{i} denote the sum of the cardinalities of the intersections of the sets taken i at a time. Prove that

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{i=1}^{n} \alpha_{i}(-1)^{i+1}
$$

(b) Let $S(n, k)$ denote the number of partitions of an n-set into k parts. Write down, without proof, the number of surjections from an n-set to a k-set in terms of n, k and $S(n, k)$.
(c) Show that

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n} .
$$

[Hint: Consider all functions from an n-set to a k-set $K=\left\{y_{1}, \ldots, y_{k}\right\}$, and let A_{i} be the set of functions which do not have y_{i} in their range. Then count surjections.]
2. Solve the following recurrence relation

$$
a_{n}-4 a_{n-1}+a_{n-2}=3^{n} \quad(n \geq 2)
$$

given that $a_{0}=a_{1}=0$.
3. (a) Write down (without proof) the coefficient of x^{k} in the power series expansion of $(1-x)^{n}$.
(b) Ten letters are to be chosen (order not important) using the letters a, b, c. In how many ways can this be done if:
(i) Each of the three letters can be chosen an unlimited number of times?
(ii) The letter a must be chosen at least once (but otherwise an unlimited number of times), the letter b cannot be chosen more than five times, and the letter c can be chosen an unlimited number of times?
(c) Let $g(x)=\sum_{r=0}^{\infty} a_{r} x^{r}$ and $f(x)=\sum_{r=0}^{k} x^{r}$. Write down the coefficient of x^{k} in the product $f(x) g(x)$ in terms of the coefficients of $g(x)$.
4. (a) Let $p(n)$ denote the number of partitions of the positive integer n and let $p(n \mid \mathcal{P})$ denote the number of partitions satisfying a given property \mathcal{P}. Write down the generating function for $p(n)$.

Let $k \geq 1$ be fixed, let \mathcal{P}_{1} be the property "No part in the partition appears more than k times" and let \mathcal{P}_{2} be the property "No part in the partition is divisible by $k+1$ ". Prove that $p\left(n \mid \mathcal{P}_{1}\right)=p\left(n \mid \mathcal{P}_{2}\right)$.
(b) Solve the first order recurrence relation

$$
a_{n}=n a_{n-1}+(-1)^{n} \quad(n \geq 2)
$$

given that $a_{1}=0$. What is the value of

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n!} ?
$$

