Section B

4. (a) Show that a graph G is a Cayley graph $\operatorname{Cay}(\Gamma, S)$ if $(\operatorname{Aut}(G), V(G))$ contains a sub-permutation group isomorphic to Γ acting regularly on $V(G)$. Deduce that if G is a graphical regular representation (GRR) of its automorphsim group Γ then G is isomorphic to some Cayley graph Cay (Γ, S). [11]
(b) Show how a GRR of a group of odd order can be used to construct a graph each of whose vertices has a pseudosimilar mate.
(c) Call a vertex u of G irreplaceable if for no set of neighbours A of u is there a set B of vertices of G not adjacent to u such that G is isomorphic to the graph obtained by removing all edges in $\{u a: a \in A\}$ and replacing them by edges $\{u b: b \in B\}$.

Show that an irreplaceable vertex u of G cannot be pseudosimilar to any vertex to which it is not adjacent.
5. Let Γ be a group, $S \subseteq \Gamma$ such that $S^{-1}=S$, and G the Cayley graph $\operatorname{Cay}(\Gamma, S)$.
(a) Let ϕ be an automorphism of the group Γ such that $\phi(S)=S$. Show that ϕ is an automorphism of the graph G fixing the vertex 1 .
(b) Suppose that G is a (GRR) of the group Γ. Show that if Γ is abelian, then it is an elementary abelian 2-group.
(c) Let Γ be the elementary abelian 2-group \mathbb{Z}_{2}^{5} generated by the distinct elements $a_{i}, 1 \leq i \leq 5$. Let S be the set

$$
S=\left\{a_{i}, a_{k} a_{k+1}, a_{1} a_{2} a_{3} a_{4}, a_{1} a_{2} a_{4} a_{5}: 1 \leq i \leq 5,1 \leq k<5\right\} .
$$

Consider the Cayley graph $G=\operatorname{Cay}(\Gamma, S)$, and suppose ϕ is an automorphism which fixes 1 . Let H be the subgraph of G induced by the neighbours of 1 . Show that H has the trivial automorphism group and deduce that G is a GRR of Γ.
6. (a) Let G be a graph without isolated vertices. Show that the deck of G is uniquely determined from the edge-deck of G. [Any form of Kelly's Lemma, if required, may be quoted without proof.]
(b) Let G be a graph on at least three vertices. Prove that each of the following is reconstructible from the deck $\mathcal{D}(G)$:
(i) The number of edges of G;
(ii) For any $G-v \in \mathcal{D}(G)$, the degree in G of the missing vertex v;
(iii) For any $G-v \in \mathcal{D}(G)$, the degrees of the neighbours of v in G.
[10]
(c) Assuming that the minimum degree δ of a graph G is reconstructible from its edge-deck, show that a graph G is edge-reconstructible in each of the following cases.
(i) G contains two adjacent δ-vertices.
(ii) G contains a $(\delta+1)$-vertex adjacent to two δ-vertices.
(iii) G contains a triangle with one δ-vertex and two $(\delta+1)$-vertices.

