MA131—June 1994

1. An urn contains N fair dice $(N>0)$. The probability that $N=i$ is given by $\left(\frac{1}{2}\right)^{i}$. These dice are then thrown and the sum of the scores is recorded as S. Find
(i) $\mathbf{P}(N$ is even $)$;
(ii) $\mathbf{P}(S=4 \mid N=2)$;
(iii) $\mathbf{P}(S=4 \mid N=4)$;
(iv) $\mathbf{P}(S=4 \mid N$ is even $)$;
(v) $\mathbf{P}(S=4 \mid N=3), \mathbf{P}(S=4 \mid N=1)$ and $\mathbf{P}(S=4)$;
(vi) $\mathbf{P}(N$ is even $S=4)$.
2. The quadratic equation $x^{2}-2 x+b=0$ is known to have two real distinct roots. The coefficient b is a positive random variable which is uniformly distributed in the permissible range of values. Find the expectation and variance of the larger root of the quadratic.
3. (a) Suppose X coins are tossed, where X is a Poisson random variable with parameter λ. Each coin gives heads with probability p and tails with probability $q=1-p$ independently of the others. Let Y be the number of heads obtained. Show that Y is a Poisson random variable with parameter λp.
(b) A box contains n tickets numbered from 1 to n, each ticket getting a distinct number. A set A of m tickets $(m \leq n)$ is randomly drawn from the box. Let the random variable S be defined to be the sum of the tickets in A. For $i=1, \ldots, n$, let the random variable S_{i} be defined by putting $S_{i}(A)=1$ if ticket i is in A and $S_{i}(A)=0$ if ticket i is not in A. Find $\mathrm{E}\left(S_{i}\right)$ and hence, using linearity of expectation, find $\mathrm{E}(S)$.
