AN INVITATION TO TWO-FOLD ORBITAL DIGRAPHS: THE DISCONNECTED CASE

Josef Lauri, University of Malta Russell Mizzi, University of Malta Raffaele Scapellato, Politecnico di Milano

NOTE!

All our graphs are digraphs in which the existence of any arc (x, y) implies the existence of the arc (y, x).

Together they form the edge $\{x, y\}$.

All digraphs are finite and without multiple arcs, but loops are allowed.

ORBITAL GRAPHS:

Let Γ be a permutation group acting transitively on a set V. Fix $(u, v) \in V \times V$. Then all pairs $(\alpha(u), \alpha(v))$, with $\alpha \in \Gamma$, form a digraph G, such that $\Gamma \leq Aut(G)$.

 ${\boldsymbol{G}}$ is vertex- and arc-transitive.

If G is disconnected then all its components are isomorphic.

Notation:

S will denote $S_n \times S_n$.

 Γ will denote a subgroup of $\mathcal S.$

Suppose $\pi_1, \pi_2 : \Gamma \to S_n$ are defined by $\pi_1(\alpha, \beta) = \alpha$ and $\pi_2(\alpha, \beta) = \beta$. Then, π_1 and π_2 are said to be the *canonical projections* of Γ on S_n .

TWO-FOLD ORBITAL DIGRAPHS:

Let $\Gamma \leq S$ where $\pi_1 \Gamma$ and $\pi_2 \Gamma$ are transitive on the *n*-set *V*.

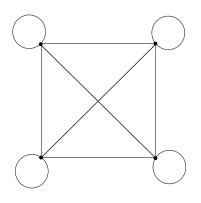
For a fixed element (u, v) in $V \times V$ let

 $\Gamma(u,v) = \{(\alpha(u),\beta(v))|(\alpha,\beta)\in\Gamma\}$

The set $\Gamma(u, v)$ is called a *two-fold orbital*.

The digraph $G = (V, \Gamma(u, v))$ is said to be a *two-fold orbital digraph* (*TOD*) or a Γ -orbital digraph.

If G is self-paired then G is a *two-fold orbital* graph (TOG) or a Γ -orbital graph.



This graph, has arc set $\Gamma(1,2)$ where $\Gamma = D_4 \times S_4 \leq S_4 \times S_4.$

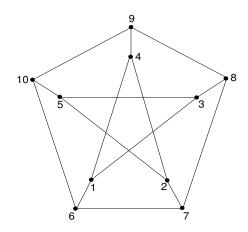
Although Γ is not self-paired, $A(G) = \Gamma(1,2)$ is.

TF-ISOMOPRHISMS

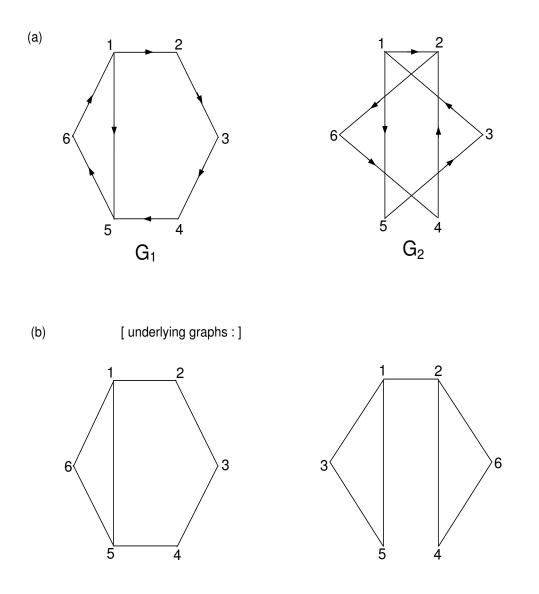
Let G_1 and G_2 be two digraphs. Then (α, β) is a *two-fold isomorphism* from G_1 to G_2 , (*TF-isomorphism*) $\iff \alpha$ and β are bijections from $V(G_1)$ to $V(G_2)$ and $u \longrightarrow_{G_1} v \iff \alpha(u) \longrightarrow_{G_2} \beta(v)$ for every pair of vertices $u, v \in V(G_1)$.

If there is a TF-isomorphism between digraphs G_1 and G_2 , we say that G_1 and G_2 are *TF*isomorphic ($G_1 \cong^{TF} G_2$). A TF-isomorphism $(\alpha, \beta) : G_1 \to G_1$, that is, between a digraph and itself, is called a *TF-automorphism*.

The set of TF-*automorphisms* of a digraph G is a group and it is denoted by $Aut^{TF}G$.



 (α, β) is a TF-automorphism of the Petersen graph where α, β are defined by $\alpha = \beta = (1\ 2\ 3\ 4\ 5)(6\ 7\ 8\ 9\ 10)$



 $\alpha = (1 \ 2 \ 3)(4)(5)(6), \beta = (1 \ 4)(2 \ 5)(3 \ 6) \& (\alpha, \beta)$ is a TF-isomorphism from G_1 to G_2 . But there is no TF-isomorphism between the corresponding underlying graphs.

CANONICAL DOUBLE COVERINGS

Let G be a digraph. The canonical double covering (CDC) of G is the digraph $\mathbf{B}(G)$, whose vertex set is $V(G) \times \mathbb{Z}_2$ such that there exists an arc

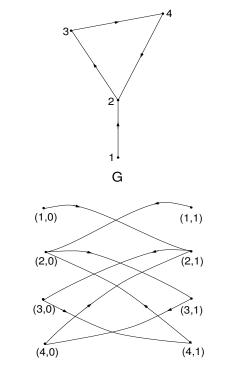
$$(u, \varepsilon) \longrightarrow (v, \varepsilon + 1) \iff u \longrightarrow_G v \text{ exists}$$

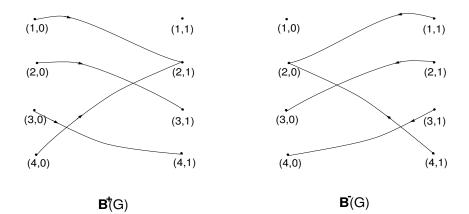
 $(\varepsilon, \in \mathbb{Z}_2).$

Clearly $B(G) = G \times K_2$, the categorical product of G and K_2 .

B(G) is bipartite.

If G is bipartite then B(G) is disconnected.

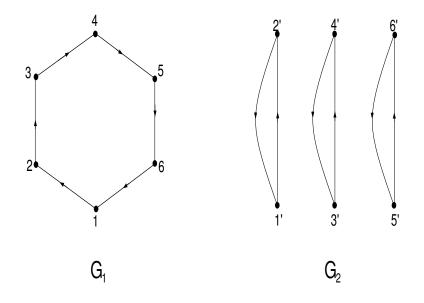




Digraphs G, B(G), $B^+(G)$ and $B^-(G)$.

11

Theorem. Two digraphs G_1 and G_2 such that $B(G_1) \cong B(G_2)$ are TF-isomorphic. The converse holds in the case of graphs.



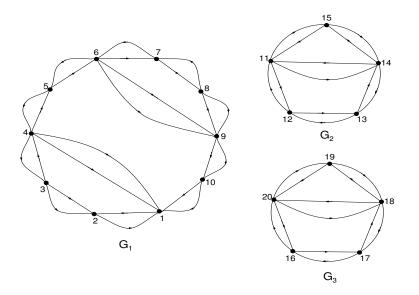
 $B(G_1) \ncong B(G_2)$. However, there exists a TF-isomorphism (α, β) from G_1 to G_2 defined by $\alpha = id$ and $\beta = (1 \ 5 \ 3)(2)(4)(6)$. DISCONNECTED TWO-FOLD ORBITAL GRAPHS

Theorem. Let G be a TOG with no isolated vertices and let its connected components be G_1, \ldots, G_k and:

 $|V(G_1)| \ge |V(G_2)| \ge \dots \ge |V(G_k)|.$

Then each G_i (i = 1, ..., k) is still a TOG. Moreover :

- (i) if $|V(G_1) = |V(G_k)|$, then $G_1, G_2, ..., G_k$ are pairwise TF-isomorphic :
- (ii) otherwise, there exists a unique index $r \in \{1, ..., k-1\}$ such that $G_1 \cong G_2 \cong ... \cong G_r \not\cong^{TF} G_{r+1} \cong^{TF} ... \cong^{TF} G_k$ and $G_1 \cong \mathbf{B}(G_k)$



Graph G has components G_1 , G_2 and G_3 .

G is a *TOG* where $\alpha =$

 $(1\ 11\ 20\ 6\ 9\ 14\ 18\ 4)(2\ 3\ 13\ 17\ 8\ 7\ 12\ 16)(5\ 15\ 19\ 10)$

and $\beta =$

(1 4 14 18 9 6 11 20)(2 12 16 7 8 13 17 3)(5 10 15 19).

Theorem. Let G be a disconnected TOG, with no isolated vertices and let its connected components be G_1, \ldots, G_k . If one of its components is bipartite then

(i) either all the components are isomorphic,

(ii) there exists a unique index $r \in \{1, ..., k - 1\}$ such that $G_1 \cong G_2 \cong ... \cong G_r \not\cong^{TF}$ $G_{r+1} \cong^{TF} ... \cong^{TF} G_k$ and $G_1 \cong \mathbf{B}(G_k)$ where all G_i where $1 \leq i \leq r$ are bipartite and no G_j where $r+1 \leq j \leq k$ is bipartite.

Corollary A disconnected bipartite graph G is a TOG only if its components are all isomorphic.

Disconnected TOG's and the cycle structures of α and β

Theorem. Let G be a disconnected graph and let |V(G)| = n. Suppose that (α, β) is a TF-automorphism on G. Let $\alpha = \alpha_1 \alpha_2 \dots \alpha_r$ where α_i $(1 \le i \le r)$ represent disjoint cycles of length $n_{\alpha i}$. Similarly let $\beta = \beta_1 \beta_2 \dots \beta_s$ where β_j $(1 \le j \le s)$ represent a cycles of length $n_{\beta j}$. Then, if any two numbers from the set $\{n_{\alpha i}, n_{\beta j} | 1 \le i \le r, 1 \le j \le s\}$ are relatively prime, the graph cannot be a TOG.

AVOIDING LOOPS: χ -ORBITAL DIGRAPHS

 χ -orbital digraphs

Let $\Gamma \leq S_n$ and $\chi : \Gamma \to \Gamma$ a homomorphism.

Then $D_{\chi}(\Gamma) = \{(\alpha, \chi(\alpha)) | \alpha \in \Gamma\} \leq S.$

A $D_{\chi}(\Gamma)$ -two-fold orbital digraph will be referred to as a χ -orbital digraph or a χ -TOD for short.

Let Γ be transitive and $\chi \in Aut(\Gamma)$. Define

$M_{\chi}(\Gamma) = \{(\chi(\alpha))^{-1}\alpha \mid \alpha \in \Gamma\}$

(Note: if Γ is abelian, then $M_{\chi}(\Gamma)$ is a subgroup of Γ .) **Theorem.** Let $\Gamma \leq S_n$ and $\chi \in Aut\Gamma$.

(i) if $M_{\chi}(\Gamma) = \Gamma$, then the graph $\mathcal{D}_{\chi}(\Gamma)(u, v)$ always has loops ;

(ii) if $M_{\chi}(\Gamma) \neq \Gamma$ and Γ is regular, then there exists (u, v) such that $D_{\chi}(\Gamma)(u, v)$ has no loops.

Two elementary results about $M_{\chi}(\Gamma)$.

- If $|\Gamma|$ is odd, then $M_{\chi}(\Gamma) = \Gamma$, otherwise $M_{\chi}(\Gamma) < \Gamma$.
- If Γ is a nilpotent group of class 2 and χ is an inner automorphism of Γ , $\chi : \alpha \mapsto \gamma^{-1} \alpha \gamma$ then $M_{\chi}(\Gamma) < \Gamma$.

- **Problem 1.** Characterise those digraphs that are Γ -orbital for a suitable group Γ
- Problem 2 Study the behaviour of the construction of TODs with respect to various graph-theoretical properties (here: disconnectedness).
- Problem 3 Find ways in which the properties of a TOD can be controlled by making β depend on α.
- **Problem 4** Can $Aut^{TF}(G)$ give useful information about G?

- **Conjecture 1**. A disconnected *TOG* with no isolated vertices is a disconnected line graph of some graph *G*.
- Conjecture 2. Any disconnected TOG whose components are all isomorphic is an iterated line graph Lⁿ(G) of some graph G, where G is a disconnected bipartite TOG.
- Conjecture 3. The subgraph of a disconnected TOG made up of all isomorphic components of the disconnected TOG is an iterated line graph Lⁿ(G) of some graph G, where G is a disconnected bipartite TOG.

Conjectures due to Russell Mizzi.

http://staff.um.edu.mt/jlau/research