Ordered Groups

```
joseph.muscat@um.edu.mt
```

27 March 2015

1 Ordered Monoids

An ordered monoid is a set with a monoid operation • and an order relation \leqslant, such that the operation is monotone:

$$
x \leqslant y \Rightarrow a x \leqslant a y, x a \leqslant y a
$$

Hence if $x \leqslant y, a \leqslant b$, then $a x \leqslant b y$.
The morphisms are the monotone group morphisms (preserve both • and \leqslant). (Left-ordered monoids only have left multiplication being monotonic.)
Examples:
-

	$0<2<1$				
0	0	0	0		
2	0	2	2		
1	0	2	1	\quad	a
:---:					

Other finite examples:
$-0=a^{n}<a^{n-1}<\cdots<a<1$
$-0<a<1<\top, a<b<\top$ with $a^{2}=0=a b, b^{2}=a=b a$
$-0<a<b<c<\top, a<1<\top, x y=0$ except $c^{2}=a, x 1=x=1 x$, $x \top=x=\top x$.

- \mathbb{Z} with addition and \leqslant.
\mathbb{N}^{\times}with multiplication and $\leqslant\left(\right.$but not \mathbb{Z}^{\times}since $\left.(-1)(-1) \notin(-1) 1\right)$.
- The endomorphism monoid of an ordered space with $\phi \leqslant \psi \Leftrightarrow \phi(x) \leqslant$ $\psi(x), \forall x$. Every ordered monoid is embedded in some such space (e.g. via $x \mapsto f_{x}$, where $\left.f_{x}(y):=x y\right)$.
- Free monoid: Words with the operation of concatenation and $u \leqslant v$ if letters of u are in v in the same order, e.g. abc \leqslant xaxxbxcx. $1 \leqslant X$.
- Divisibility monoids: Any pure monoid modulo a normal subgroup of invertibles, X / G, with $x G \leqslant y G \Leftrightarrow x \mid y$, meaning $a x=y$ and $x b=y$ for some a, b. For example, \mathbb{N} with + and \leqslant; any \vee-semi-lattice with multiplication \vee (so $y=a \vee x \Leftrightarrow y \geqslant x)$; any integral domain with a field of fractions F and invertibles G induce the abelian ordered group F^{\times} / G. Satisfies $1 \leqslant X$.
More generally, any cancellative monoid with a sub-monoid P which is central and whose only invertible is 1 ; let $x \leqslant y \Leftrightarrow y=x a, \exists a \in P$. For example, X^{Y} where X is a commutative ordered group and P is the set of monotonic functions which fix $1 ; \mathbb{F}[x]$ with P the monic polynomials. Or any monoid with P the sub-monoid of central idempotents.
- Generalized Minkowski space: \mathbb{R}^{n} with $\boldsymbol{x} \leqslant \boldsymbol{y} \Leftrightarrow \boldsymbol{y}-\boldsymbol{x} \in P$ where P is (a) $\mathbb{N} \times \mathbf{0}^{n-1}$, or in general (b) any sub-monoid generated from $A \subseteq \mathbb{R}^{+} \times \mathbb{R}^{n-1}$ such as any convex rayed subset (e.g. cones).
- Any monoid with a zero and the inequalities $0 \leqslant x$.

Sub-monoids, products, and X^{A} are also ordered monoids. $X \times 1$ and $1 \times X$ are convex sub-monoids of $X \times Y$.

An ordered monoid can act on an ordered set, in which case $a \leqslant b, x \leqslant y$ implies $a \cdot x \leqslant b \cdot y$. If a monoid X acts on another Y, then their semi-direct (or ordinal) product is $X \rtimes Y$ with $(a, b)(x, y):=(a(a \cdot y), b y)$ and the product or lexicographic order. In particular, the lex product $X \overleftarrow{\times} Y$ with $(a, b)(x, y):=$ ($a x, b y$).

Since the intersection of convex sub-monoids is again of the same type, a subset A generates a unique smallest convex sub-monoid Convex (A). Any morphism pulls convex normal subgroups N to convex normal subgroups $\phi^{-1} N$. The map $x \mapsto a^{-1} x a$ is an automorphism.

Proposition 1

The completion of an ordered monoid is again an ordered monoid.

Proof: Recall the Dedekind-MacNeille completion, where $A^{L U}:=L U(A)$ and $x^{L U}=\downarrow x$. It is easy to prove $A^{L U} x=(A x)^{L U}$, so $A^{L U} B \subseteq(A B)^{L U}$ and $\left(A^{L U} B\right)^{L U}=(A B)^{L U}$. On the completion \bar{X} consisting of the 'closed' subsets $A^{L U}=A$, define $A \cdot B:=(A B)^{L U}$. Then $(A \cdot B) \cdot C=\left((A B)^{L U} C\right)^{L U}=$ $(A B C)^{L U}=A \cdot(B \cdot C)$. The identity of \bar{X} is $1^{L U}=\downarrow 1$ since $A \cdot 1^{L U}=$ $(A 1)^{L U}=A . A \subseteq B \Rightarrow(A C)^{L U} \subseteq(B C)^{L U}$ is trivial. X is embedded in \bar{X} since $(x y)^{L U}=x^{L U} y^{L U}$.

1.0.1 Positive Cone

For any idempotent e, the subset $\uparrow e$ is an upper-closed directed sub-monoid $(x, y \geqslant e \Rightarrow x y \geqslant x, y)$

In particular, the positive cone of X is $X^{+}:=\uparrow 1=\{x: x \geqslant 1\}$; it is a convex normal sub-monoid $\left(a^{-1} x a \geqslant 1\right)$. Similarly $X^{-}:=\downarrow 1=\{x: x \leqslant 1\}$.

1. $a>1$ AND $b \geqslant 1 \Rightarrow a b>1 ; a, b \geqslant 1$ AND $a b=1 \Rightarrow a=1=b$.
2. Any element of X^{+}or X^{-}is either aperiodic or has period 1 .

Proof: $x^{n} \leqslant x^{n+1} \leqslant \ldots \leqslant x^{n+m}=x^{n}$.
3. The sub-monoid generated from $X^{+} \cup X^{-}$is connected.

Proof: $x=a_{+} b_{-} c_{+} \cdots \geqslant b_{-} c_{+} \cdots \leqslant c_{+} \cdots \leqslant 1$.
4. If $\phi: X \rightarrow Y$ is a morphism then $\phi X^{+} \subseteq Y^{+}$. For a sub-monoid $Y^{+}=$ $X^{+} \cap Y$.
5. If $x_{i} y_{j} \leqslant y_{j} x_{i}$ then $x_{1} \cdots x_{n} y_{1} \cdots y_{m} \leqslant y_{1} \cdots y_{m} x_{1} \cdots x_{n}$. In particular, if $x y \leqslant y x$ then $x^{n} y^{n} \leqslant(x y)^{n} \leqslant(y x)^{n} \leqslant y^{n} x^{n}$.
6. A top \top or bottom \perp of the space are idempotents, but need not be the same as any of 1 and 0 . However, if $0<1$ or $1<0$ holds, then 0 is the bottom or top (by duality, one can assume 0 to be the bottom).
7. If $0<1$ then X^{+}has no zero divisors; dual statements hold.
8. The relation $x \prec y \Leftrightarrow \exists n \in \mathbb{N}^{+}, x \leqslant y^{n}$ is a pre-order relation on X^{+}; it induces an equivalence relation $x \prec y$ AnD $y \prec x$ with equivalence classes called Archimedean components; 1 is its own equivalence class; one can define $[x] \prec[y]$ when $x \prec y$. Note that $x \prec y \Rightarrow \phi(x) \prec \phi(y), x^{n} \in[x]$, $x, y \prec a \Rightarrow x y \prec a$. One also writes $x \ll y$ for $x \prec y$ but $y \nprec x$, meaning x is "infinitesimal" compared to y.
X is called "isolating" when $1 \prec y \Leftrightarrow 1 \leqslant y$.
9. When X is commutative, each Archimedean component together with 1 is a sub-monoid. An Archimedean monoid is the case when there is only one non-trivial component, so

$$
1<x \leqslant y \Rightarrow \exists n \in \mathbb{N}, y<x^{n}
$$

i.e., $x^{\mathbb{N}}$ is unbounded for $x>1$.

1.1 The Group $\mathcal{G}(X)$ of Invertibles

1. $\mathcal{G}(X)$ is either trivial $\{1\}$ or it has no maximum and minimum.

Proof: If $a \geqslant 1$ is a maximum then $a \leqslant a^{2} \leqslant a$, so $a=1$.
2. If $a>1$ is invertible, then it is aperiodic $\cdots<a^{-1}<1<a<a^{2}<\cdots$. Periodic invertibles are incomparable to 1 ; so $\mathcal{G}^{+/-}$are torsion-free: $x^{n}=$ $1 \Leftrightarrow x=1(n \geqslant 1)$.
If a is invertible then $\uparrow a=a X^{+}=X^{+} a$ is order-isomorphic to X^{+}(via $\left.x \mapsto a^{-1} x\right)$.
Thus finite ordered groups have trivial order.
3. The order structure of \mathcal{G} is determined by $\mathcal{G}^{+}, x \leqslant y \Leftrightarrow x^{-1} y \in \mathcal{G}^{+} . \mathcal{G}^{+}$ and \mathcal{G}^{-}are closed under multiplication and conjugation. (Hence $\mathcal{G} X^{+}=$ $X^{+} \mathcal{G}$ and $\mathcal{G} X^{-}$are sub-monoids.)
(For any group, one can pick any sub-monoid for \mathcal{G}^{+}with the property that if $x \in \mathcal{G}^{+}, x \neq 1$, then $x^{-1} \notin \mathcal{G}^{+}$, and define $x \leqslant y \Leftrightarrow a x=y, x b=y$ for some $a, b \in \mathcal{G}^{+}$.)
4. \mathcal{G}^{-}is a mirror image of \mathcal{G}^{+}via the quasi-complement map $x \mapsto x^{-1}$,

$$
x \leqslant y \Leftrightarrow y^{-1} \leqslant x^{-1}
$$

so $x \in \mathcal{G}^{+} \Leftrightarrow x^{-1} \in \mathcal{G}^{-} ; \mathcal{G}^{+} \cap \mathcal{G}^{-}=\{1\}$.
5. A subgroup Y is convex $\Leftrightarrow Y^{+}$is convex in X^{+}.

The kernel of an ordered-group morphism $\phi: G \rightarrow H$ is a convex normal subgroup. Conversely, for Y a convex normal subgroup, G / Y is a leftordered group, with

$$
g Y . h Y:=(g h) Y, \quad g Y \leqslant h Y \Leftrightarrow g y_{1} \leqslant h y_{2}, \exists y_{1}, y_{2} \in Y
$$

(anti-symmetry requires convexity); then $G / \operatorname{ker} \phi \cong \operatorname{im} \phi$.
6. $\left[x_{i}, y_{j}\right]>1 \Rightarrow\left[x_{1} \cdots x_{n}, y_{1} \cdots y_{m}\right]>1$ (since $\left.[x, a b]=[x, b] b^{-1}[x, a] b\right)$.
7. (Rhemtulla) The ordered group G is determined by its group ring $\mathbb{Z} G$ (which can be embedded in a division ring).

1.2 Residuated Monoids

are ordered monoids such that for every pair x, y, there are elements $x \rightarrow y$ and $x \leftarrow y$,

$$
\begin{aligned}
& x w \leqslant y \Leftrightarrow w \leqslant(x \rightarrow y) \\
& w x \leqslant y \Leftrightarrow w \leqslant(y \leftarrow x)
\end{aligned}
$$

equivalently the maps $x *$ and $* x$ have adjoints $x \rightarrow$ and $\leftarrow x$; equivalently $x \rightarrow y$ is the largest element such that $x(x \rightarrow y) \leqslant y$, and similarly $(y \leftarrow x) x \leqslant y$.
(Dual relations: $x w \geqslant y \Leftrightarrow w \geqslant(x \backslash y)$, etc.)
Examples:

- Ordered groups, with $x \rightarrow y=x^{-1} y, y \leftarrow x=y x^{-1}, x^{-1}=x \rightarrow 1$. A residuated monoid is a group when $x(x \rightarrow 1)=1=(x \rightarrow 1) x$.
- The subsets of any monoid with $A B:=\{a b: a \in A, b \in B\}$ and $A \subseteq B$; then $A \rightarrow B=\{x: A x \subseteq B\}, B \leftarrow A=\{x: x A \subseteq B\}$. It has a zero \varnothing and an identity $\{1\}$ (the order is Boolean but it need not be a lattice monoid).
- The additive subgroups of a unital ring with $A * B:=\llbracket A B \rrbracket=\left\{\sum_{i=1}^{n} a_{i} b_{i}\right.$: $\left.a_{i} \in A, b_{i} \in B\right\}$ and $A \subseteq B$; has a zero 0 , an identity $\llbracket 1 \rrbracket$, is modular; $A \rightarrow B=\{x: A x \subseteq B\}$.
- Bicyclic Monoid $\llbracket a, b: b a=1 \rrbracket$ with free monoid order; then $a^{m} b^{n} \leqslant$ $a^{m+r} b^{n+r}$, idempotents are $a^{n} b^{n}$. Equivalently, \mathbb{N}^{2} with $(m, n)(i, j):=$ $(m-n+\max (n, i), j-i+\max (n, i))$.

In what follows, every inequality has a dual form in which every occurrence of $x \rightarrow y$ and $x y$ are replaced by $y \leftarrow x$ and $y x$.

1. By the general results of adjoints, $x *$ and $* x$ preserve \leqslant, and

$$
\begin{gathered}
x(x \rightarrow y) \leqslant y \leqslant x \rightarrow(x y), \quad x(x \rightarrow x y)=x y \\
x \rightarrow x(x \rightarrow y)=x \rightarrow y \\
y \leqslant z \Rightarrow x \rightarrow y \leqslant x \rightarrow z \\
y \leqslant z \Rightarrow y \rightarrow x \geqslant z \rightarrow x
\end{gathered}
$$

Proof: If $y \leqslant z$ then $w \leqslant(x \rightarrow y) \Leftrightarrow x w \leqslant y \Rightarrow x w \leqslant z \Leftrightarrow w \leqslant(x \rightarrow z)$.
2. $1 \rightarrow x=x=x \leftarrow 1, x \rightarrow x \geqslant 1, x(x \rightarrow x)=x$.
3. $(z \rightarrow y) x \leqslant(z \rightarrow y x), x \rightarrow y \leqslant z x \rightarrow z y,(x \rightarrow 1) y \leqslant x \rightarrow y$.
(since $z(z \rightarrow y) x \leqslant y x)$
4. (a) $x \rightarrow(y \rightarrow z)=(y x) \rightarrow z$, hence $x \rightarrow y \leqslant(z \rightarrow x) \rightarrow(z \rightarrow y)$
(b) $x \rightarrow y \leftarrow z$ is unambiguous.
(c) $x \leqslant y \leftarrow(x \rightarrow y)$

Proof: $w \leqslant x \rightarrow(y \leftarrow z) \Leftrightarrow x w \leqslant y \leftarrow z \Leftrightarrow x w z \leqslant y \Leftrightarrow w \leqslant(x \rightarrow y) \leftarrow z$
5. $(x \rightarrow y)(y \rightarrow z) \leqslant(x \rightarrow z),(x \rightarrow x)(x \rightarrow x)=x \rightarrow x$

Hence $x \rightarrow y \leqslant(x \rightarrow z) \leftarrow(y \rightarrow z)$
6. If a bottom 0 exists, then it is a zero $x 0=0=0 x$; there would also be a top $\top=0 \rightarrow 0=0 \leftarrow 0$, so $0 \rightarrow x=\top=x \rightarrow \top . x \rightarrow 0 \neq 0$ iff x is a divisor of zero.
7. When 1 is the top of the order, \leftarrow, \rightarrow are implications,

$$
x \leqslant y \Leftrightarrow x \rightarrow y=1
$$

in particular $(x \rightarrow 1)=1=(x \rightarrow x)=(0 \rightarrow x)$.
8. When $*$ is commutative, $x \rightarrow y=y \leftarrow x$.

2 Lattice Monoids

are sets with a monoid operation and a lattice order such that multiplication is a lattice morphism,

$$
\begin{array}{ll}
x(y \vee z)=(x y) \vee(x z) & x(y \wedge z)=(x y) \wedge(x z) \\
(y \vee z) x=(y x) \vee(z x) & (y \wedge z) x=(y x) \wedge(z x)
\end{array}
$$

They are ordered monoids since $x \leqslant y \Leftrightarrow x \vee y=y \Rightarrow a x \vee a y=a y \Leftrightarrow$ $a x \leqslant a y$. But, conversely, an ordered monoid whose order is a lattice can only guarantee $x(y \vee z) \geqslant(x y) \vee(x z)$, etc.

Examples:

- The endomorphisms of a lattice with composition and

$$
(\phi \vee \psi)(x)=\phi(x) \vee \psi(x)
$$

- Any distributive lattice with \wedge as the operation.
- Free monoids of words from a finite alphabet with operation of joining and linearly ordered according to first how many a's, then b, $a b$, ba, aab, etc.,

$$
\begin{array}{r}
-<\mathrm{b}<\mathrm{bb}<\cdots<\mathrm{a}<\mathrm{ba}<\mathrm{ab}<\mathrm{bba}<\mathrm{bab}<\mathrm{abb}<\mathrm{aa}< \\
\mathrm{baa}<\mathrm{aba}<\mathrm{aab}<\mathrm{bbaa}<\mathrm{baba}<\mathrm{abba}<\mathrm{baab}<\cdots
\end{array}
$$

Equivalently, replace a by $(1+a)$, etc., expand the resulting polynomials, and compare using first degrees then lexicographic (for same degree).

- Factorial monoids (i.e., those that have unique factorizations into irreducibles) with $x \leqslant y \Leftrightarrow x \mid y$, e.g. $\mathbb{Q}[x]$.

A lattice-sub-monoid is a subset that is closed under $1, *, \wedge, \vee . X \times Y$ and X^{A} are lattice monoids. Morphisms need to preserve both the monoid and lattice structure.

1. (a) $(x \vee y)(a \vee b)=(x a) \vee(y a) \vee(x b) \vee(y b)$,
(b) $(x \vee y)(a \wedge b)=(x a \wedge x b) \vee(y a \wedge y b)=(x a \vee y a) \wedge(x b \vee y b)$.
(c) $x a \wedge y b \leqslant(x \vee y)(a \wedge b) \leqslant x a \vee y b$
(d) If x, y commute then $x y=(x \vee y)(x \wedge y)$, and

$$
(x \vee y)^{n}=x^{n} \vee x^{n-1} y \vee \cdots \vee y^{n}, \quad(x \wedge y)^{n}=x^{n} \wedge \cdots \wedge y^{n}
$$

Note, in general, $x \vee(y z) \neq(x \vee y)(x \vee z)$.
2. X^{+}, X^{-}are sub-lattice-monoids that generate X :

Let $x_{+}:=x \vee 1, x_{-}:=x \wedge 1$;
(a) $x_{-} \leqslant x \leqslant x_{+}$with $x_{ \pm} \in X^{ \pm}$.
(b) $x=x_{+} x_{-}=x_{-} x_{+}$.
(c) $x \mapsto x_{+}$is a \vee-morphism and a closure map

$$
x \leqslant y \Rightarrow x_{+} \leqslant y_{+}, \quad(x \vee y)_{+}=x_{+} \vee y_{+}, \quad(x \wedge y)_{+} \leqslant x_{+} \wedge y_{+}
$$

Dually, $x \mapsto x_{-}$is a \wedge-morphism,

$$
\begin{gathered}
x \leqslant y \Rightarrow x_{-} \leqslant y_{-}, \quad(x \wedge y)_{-}=x_{-} \wedge y_{-}, \quad x_{-} \vee y_{-} \leqslant(x \vee y)_{-} \\
x_{++}=x_{+}, \quad x_{+-}=1=x_{-+}, \quad x_{--}=x_{-}
\end{gathered}
$$

(d) $x_{-} y_{-} \leqslant x_{-} \wedge y_{-} \leqslant x \wedge y \leqslant x_{+} y_{-} \leqslant x \vee y \leqslant x_{+} \vee y_{+} \leqslant x_{+} y_{+}$ $x_{-} y_{-} \leqslant(x y)_{-} \leqslant\left(x_{+} y\right)_{-} \leqslant x_{+} y_{-} \leqslant\left(x y_{-}\right)_{+} \leqslant(x y)_{+} \leqslant x_{+} y_{+}$
(e) If x, y commute, then so do $x_{ \pm}, y_{ \pm}$.
(f) Morphisms preserve $x_{ \pm}$, e.g. $\left(a^{-1} x a\right)_{ \pm}=a^{-1} x_{ \pm} a$.

Proof: $(x \vee 1)(x \wedge 1)=x 1$ by $1(\mathrm{~d}) . x_{+} y_{-}=(1 \vee x)(1 \wedge y)=(1 \wedge y) \vee(x \wedge y x)=$ $y_{-} x_{+}$.
3. $x^{n} \geqslant 1 \Leftrightarrow x \geqslant 1, x^{n}=1 \Leftrightarrow x=1, x^{n} \leqslant 1 \Leftrightarrow x \leqslant 1$.

Proof: If $x^{n} \geqslant 1$ then $x_{-}^{n+1}=x_{-}\left(1 \wedge \cdots \wedge x^{n-1}\right)=x_{-}^{n}$ so $x^{n+1}=x^{n} x_{+} \geqslant 1$. If $x^{2} \geqslant 1$ then $x=x_{+} x_{-}=(1 \vee x) \wedge\left(x \vee x^{2}\right)=(1 \vee x) \wedge(1 \vee x)^{2}=x_{+} \wedge x_{+}^{2} \geqslant$ 1 ; thus $x^{2^{n}} \geqslant 1 \Rightarrow x \geqslant 1$.
So every invertible element, except 1 , is aperiodic; its generated subgroup is isomorphic to \mathbb{Z} as $\ldots<a^{-2}<a^{-1}<1<a<a^{2}<\ldots$ or they are mutually incomparable.
4. $x^{n} a \leqslant a y^{n} \Leftrightarrow x b \leqslant b y$ for some a, b.

Proof: Let $b:=x^{n-1} a \vee x^{n-2} a y \vee \cdots \vee a y^{n-1}$.
5. $\mathcal{G}(X)$ is a lattice subgroup, since for invertible elements,

$$
\begin{gathered}
(x \vee y)^{-1}=x^{-1} \wedge y^{-1}, \quad x \vee y=x(x \wedge y)^{-1} y \\
\left(x^{-1}\right)_{+}=\left(x_{-}\right)^{-1}, \quad\left(x^{-1}\right)_{-}=\left(x_{+}\right)^{-1} \\
x \vee x^{-1} \geqslant 1
\end{gathered}
$$

Proof: $1 \leqslant(x \vee y)\left(x^{-1} \wedge y^{-1}\right) \leqslant 1 .\left(x \vee x^{-1}\right)^{2}=x^{2} \vee 1 \vee x^{-2} \geqslant 1$.
6. In X^{+}, x and y are said to be orthogonal $x \perp y$ when $x \wedge y=1$ and $x y=y x$. For $x \perp y$,
(a) $(x y)_{-}=x_{-} y_{-}$
(b) $1 \leqslant z \Rightarrow x \wedge(y z)=x \wedge z$
(c) $x \perp z \Rightarrow x \perp(y z)$
(d) $x^{n} \perp y^{m}(n, m \geqslant 1)$
(e) $1 \leqslant z \prec y \Rightarrow x \perp z$

Proof: $x \wedge y z=x(x \wedge y \wedge z) \wedge y z=(x \wedge y)(x \wedge z)=x \wedge z$.
Mutually orthogonal positive elements generate a free abelian group.
Proof: If $p \cdots=q \cdots$, then $1=p \wedge(q \cdots)=p \wedge(p \cdots)=p$.
7. a is cancellative iff $a x \leqslant a y \Rightarrow x \leqslant y$.
8. The center $Z(X)$ is a sub-lattice-monoid.
9. An element in X^{+}is called irreducible when for any $x, y \geqslant 1$,

$$
a=x y \Rightarrow a=x \text { OR } a=y
$$

In particular are the primes, when for any $x, y \geqslant 1$,

$$
a \leqslant x y \Rightarrow a \leqslant x \text { OR } a \leqslant y
$$

For example, atoms of X^{+}.
Proof: $x, y \leqslant x y=a \leqslant x$ or y. If $a \wedge x, a \wedge y<a$ then $a \wedge x=1=a \wedge y$, so $a \wedge x y=1$.

2.1 Residuated Lattice Monoids

are residuated monoids which are lattice ordered. They are lattice monoids.
Examples:

- \mathbb{N} with $m \rightarrow n=$ quotient (n / m).
- [0, 1] with $x y:=\max (0, x+y-1)$; then $x \rightarrow y=\min (1,1-x+y)$.
- The set of relations on X with the operation of composition and \cap, \cup. Then $\rho \rightarrow \sigma=\{(x, y): \rho x \subseteq \sigma y\}$ and $\rho \leftarrow \sigma=\left\{(x, y): \rho^{-1} y \subseteq \sigma^{-1} x\right\}$.
- The ideals of a ring; the modules of a ring; complete lattice monoids. Much of the theory of ideals of rings generalizes to residuated lattice monoids.
- Brouwerian algebra: residuated lattice monoids in which $x y=x \wedge y$; they are commutative and distributive lattices with $X \leqslant 1$; a Heyting algebra is the special case of a bounded Brouwerian algebra, while a generalized Boolean algebra is the special case where $(x \rightarrow y) \rightarrow y=x \vee y$. Such examples can act as generalizations of classical logic.
- Matrices with coefficients from a Boolean algebra, with $A \leqslant B \Leftrightarrow \forall i, j, a_{i j} \leqslant$ $b_{i j}$ and $A B=\left[\bigvee_{k} a_{i k} \wedge b_{k j}\right] ;$ then $A \wedge B=\left[a_{i j} \wedge b_{i j}\right], A^{\prime}=\left[a_{i j}^{\prime}\right]$, $A \rightarrow B=\left(A^{\top} B^{\prime}\right)^{\prime}, B \leftarrow A=\left(B^{\prime} A^{\top}\right)^{\prime}$.

1. $x(y \vee z)=(x y) \vee(x z)$; more generally, $(\bigvee A)(\bigvee B)=\bigvee_{a \in A, b \in B} a b$.

Proof: $x y, x z \leqslant x(y \vee z) ; x y, x z \leqslant x y \vee x z=: w$, so $y, z \leqslant x \rightarrow w$ and $x(y \vee z) \leqslant x(x \rightarrow w) \leqslant w$.
2. $x \rightarrow, \leftarrow x$ are \wedge-morphisms; $x \leftarrow, \rightarrow x$ are anti- \vee-morphisms,

$$
\begin{aligned}
& x \rightarrow(y \wedge z)=(x \rightarrow y) \wedge(x \rightarrow z) \\
& (y \vee z) \rightarrow x=(y \rightarrow x) \wedge(z \rightarrow x)
\end{aligned}
$$

Proof: $w \leqslant x \rightarrow(y \wedge z) \Leftrightarrow x w \leqslant y \wedge z \Leftrightarrow x w \leqslant y, z \Leftrightarrow w \leqslant x \rightarrow$ y AND $w \leqslant x \rightarrow z$.
More generally, $(\bigvee A) \rightarrow x=\bigvee_{a \in A}(a \rightarrow x), x \rightarrow(\bigwedge A)=\bigwedge_{a \in A}(x \rightarrow a)$.
3. X^{-}is again residuated with $x \rightarrow_{-} y=(x \rightarrow y)_{-}, x \leftarrow_{-} y=(x \leftarrow y)_{-}$.
4. Left/right conjugates of x by a are defined as $(a \rightarrow x a)_{-},(a x \leftarrow a)_{-}$.
5. a is left cancellative iff $a \rightarrow a x=x$ (in particular $a \rightarrow a=1$).

Proof: $w \leqslant a \rightarrow a x \Leftrightarrow a w \leqslant a x \Leftrightarrow w \leqslant x$.
A basic logic algebra is a bounded residuated lattice monoid such that $x(x \rightarrow$ $y)=x \wedge y=(x \leftarrow y) x$ and $(x \rightarrow y) \vee(y \rightarrow x)=1$ (hence distributive and $X \leqslant 1)$. A $G M V$-algebra is a bounded residuated lattice monoid such that $y \leftarrow x \rightarrow y=x \vee y$.

2.2 Lattice Monoids with $X^{-} \subseteq \mathcal{G}(X)$

Example: A residuated lattice monoid that satisfies $x(x \rightarrow y)_{+}=x \vee y=(y \leftarrow$ $x)_{+} x$ (since if $x \leqslant 1$ then $x \rightarrow 1,1 \leftarrow x \geqslant 1$, so $\left.x(x \rightarrow 1)=x \vee 1=1=(1 \leftarrow x) x\right)$.

1. $x_{+} \wedge\left(x_{-}\right)^{-1}=1$; hence $\left(x_{+}\right)^{n} \perp\left(x_{-}\right)^{-m}$.

Proof: If $y \leqslant x_{+},\left(x_{-}\right)^{-1}$, then $x_{-} y \leqslant 1$ and $x_{-} y \leqslant x$, so $x_{-} y \leqslant x_{-}$.
2. The decomposition $x=x_{+} x_{-}$is the unique one such that $x_{+} \in X^{+}$, $x_{-} \in X^{-}, x_{+} \perp x_{-}^{-1}$.
Proof: If $x=a b$, then $b=\left(a \wedge b^{-1}\right) b=x_{-}$, so $a=x_{+} x_{-} b^{-1}=x_{+}$.
3. The absolute value of an element is $|x|:=x_{+} x_{-}^{-1}=x_{+} \vee x_{-}^{-1}$.
(a) $1 \leqslant|x|,|x|=1 \Leftrightarrow x=1$,
(b) $x \leqslant|x|,|x|= \begin{cases}x & \text { when } x \geqslant 1 \\ x^{-1} & \text { when } x \leqslant 1\end{cases}$
(c) $a \leqslant x \leqslant b \Rightarrow|x| \leqslant|a| \vee|b|$
(d) $|x y| \leqslant x_{+}|y| x_{-}^{-1}$; if x, y commute, then $|x y| \leqslant|x||y|$.
(e) $|x \wedge y|,|x \vee y| \leqslant|x| \vee|y| \leqslant|x||y|$.
(f) If x, y are invertible, then
i. $|x|=x \vee x^{-1}=\left|x^{-1}\right|$,
ii. $|x|^{-1}=x \wedge x^{-1}$, so $|x|^{-1} \leqslant x \leqslant|x|$,
iii. $|x y|=\left(x \vee y^{-1}\right)\left(x^{-1} \vee y\right)$.
(g) Morphisms preserve $|\cdot|, \phi(|x|)=|\phi(x)|$, in particular $\left|x^{-1} y x\right|=$ $x^{-1}|y| x$.

Proof: If $x_{+} \leqslant y, 1 \leqslant x_{-} y$, then $x_{+} \leqslant y \wedge x y=x_{-} y . a \leqslant x \leqslant b$ implies $x_{+} \leqslant b_{+}, x_{-}^{-1} \leqslant a_{-}^{-1}$, so $|x|=x_{+} \vee x_{-}^{-1} \leqslant|b| \vee|a| .|x \vee y|=$ $(x \vee y)_{+} \vee(x \vee y)_{-}^{-1} \leqslant x_{+} \vee y_{+} \vee\left(x_{-}^{-1} \wedge y_{-}^{-1}\right) \leqslant|x| \vee|y|$. For x invertible, $|x|=x_{+} x_{-}^{-1}=(1 \vee x)(1 \wedge x)^{-1}=(1 \vee x)\left(1 \vee x^{-1}\right)=x \vee x^{-1} \geqslant 1$. $\left(x \vee y^{-1}\right)\left(x^{-1} \vee y\right)=1 \vee x y \vee(x y)^{-1}=1 \vee|x y|$.
4. $\left(x^{n}\right)_{+}=\left(x_{+}\right)^{n},\left(x^{n}\right)_{-}=\left(x_{-}\right)^{n},\left|x^{n}\right|=|x|^{n}$.

Proof: $\left(x_{-}\right)^{n}=\left(x_{+}^{n} \wedge x_{-}^{-n}\right) x_{-}^{n}=x^{n} \wedge 1=\left(x^{n}\right)_{-} ; x_{+}^{n}=x_{+}^{n} x_{-}^{-n} x_{-}^{n}=$ $\left(x_{+}^{n} \vee x_{-}^{-n}\right) x_{-}^{n}=x^{n} \vee 1$.
5. (Riesz Decomposition) For $a_{i} \in X^{-},\left[a_{1} \cdots a_{n}, 1\right]=\left[a_{1}, 1\right] \cdots\left[a_{n}, 1\right]$, i.e.,

$$
a b \leqslant x \leqslant 1 \text { AND } a, b \leqslant 1 \Rightarrow x=c d \text { where } a \leqslant c \leqslant 1, b \leqslant d \leqslant 1
$$

Proof: Given $a b \leqslant x \leqslant 1, a, b \in X^{-}$, let $b:=a \vee x$ and $d:=x b^{-1}=$ $x\left(x^{-1} \wedge a^{-1}\right) \geqslant 1 \wedge b=b$.
6. For $x_{i}, y_{j} \leqslant 1, \prod_{i, j}\left(x_{i} \vee y_{j}\right) \leqslant\left(x_{1} \cdots x_{n}\right) \vee\left(y_{1} \cdots y_{m}\right)$.

Proof: It is enough to show $(x \vee y)(x \vee z) \leqslant x \vee y z=: s ; y z \leqslant s \leqslant 1$, so $s=a b$ with $y \leqslant a \leqslant 1, z \leqslant b \leqslant 1$; so $x \leqslant a b \leqslant a$, hence $x \vee y \leqslant a$; similarly, $x \vee z \leqslant b$, and $(x \vee y)(x \vee z) \leqslant a b=s$.
7. If $a_{i}, b_{j} \leqslant 1$ and $a_{1} \cdots a_{n}=b_{1} \cdots b_{m}$, then there are unique $c_{i j} \leqslant 1$ such that $a_{i}=c_{i 1} \cdots c_{i m}, b_{j}=c_{1 j} \cdots c_{n j}, c_{i+1, j} \cdots c_{n, j} \perp c_{i, j+1} \cdots c_{i, m}$.
Proof: For $a_{1} a_{2}=b_{1} b_{2}$, let $c_{11}:=a_{1} \vee b_{1}, c_{12}:=c_{11}^{-1} a_{1}, c_{21}:=c_{11}^{-1} b_{1}$, $c_{22}:=a_{1}^{-1} c_{11} b_{2}=a_{2} \vee b_{2}$. Then $c_{21} c_{22}=c_{11}^{-1} b_{1}\left(a_{2} \vee b_{2}\right)=a_{2}$.
8. A sub-monoid is a convex lattice-sub-monoid when $|x| \leqslant|h| \Rightarrow x \in H$ for any $h \in H$. Its convex closure is thus

$$
|H|:=\{x:|x| \leqslant|h|, \exists h \in H\} .
$$

Proof: $\left|h_{+}\right| \leqslant|h|,\left|h_{-}^{-1}\right| \leqslant|h|$, and $|h \vee g| \leqslant|h||g|=\| h| | g \mid$, so $h_{ \pm},|h|, h \vee$ $g \in H$; if $h \leqslant x \leqslant g$ then $|x| \leqslant|h| \vee|g| .1 \leqslant x_{+} \vee x_{-}^{-1}=|x| \leqslant h \in H$, so $x=x_{+} x_{-} \in H$.
9. An ultrametric valuation is one which satisfies $|x y| \leqslant|x| \vee|y|$; so $\left|x^{n}\right|=|x|$.

2.3 Lattice Groups

are ordered groups whose order is a lattice. They are residuated, hence satisfy $x(y \vee z)=x y \vee x z$, but also $x(x \rightarrow y)=x$ and $x(x \rightarrow y)_{+}=x \vee y$.

Examples:

- \mathbb{Q}^{\times}with multiplication and $p \leqslant q \Leftrightarrow q / p \in \mathbb{N}$. It is Archimedean.
- The automorphism group of a lattice, e.g. \mathbb{Z} with,$+ \leqslant ; \operatorname{Aut}_{\leqslant}(\mathbb{Q}) ; \operatorname{Aut}[0,1]$ is simple. Every lattice group is embedded in an automorphism group of some linear order.
- $C(X, Y)$ where Y is a lattice group; also measurable functions $X \rightarrow \mathbb{R}$.
- $X \rtimes_{\phi} Y$ is a lattice group if X is a lattice group and Y is a linearly ordered group.

Lattice groups are infinite, torsion-less, T-less and \perp-less (except for the trivial group). (Strictly speaking, a lattice must have a top/bottom, but these cannot be invertible.) There is no equational property that characterizes lattice groups among groups, or among lattices.

1. A subgroup is a lattice when it is closed under \vee, or even just $x \mapsto x_{+}$, since $x \wedge y=\left(x^{-1} \vee y^{-1}\right)^{-1}, x \vee y=x\left(x^{-1} y\right)_{+}$.
2. $x \mapsto a x$ is a $(\vee, *)$-automorphism, so the lattice is homogeneous.
$\bigvee_{i} a x_{i}=a \bigvee_{i} x_{i}$ (since $a x_{i} \leqslant b \Leftrightarrow \bigvee_{i} x_{i} \leqslant a^{-1} b$).
3. The lattice is distributive, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$.

Hence

$$
\begin{array}{cl}
(x \vee y)_{ \pm}=x_{ \pm} \vee y_{ \pm}, & (x \wedge y)_{ \pm}=x_{ \pm} \wedge y_{ \pm} \\
x_{+} \wedge y=(x \wedge y) \vee y_{-}, & x_{-} \vee y=(x \vee y) \wedge y_{+}
\end{array}
$$

Proof: $x \wedge(y \vee z) \leqslant(y \vee z) y^{-1} x \wedge(y \vee z)=(y \vee z)\left(y^{-1} x \wedge 1\right)=(y \vee z) y^{-1}(x \wedge$ $y)$. Hence $(x \wedge(y \vee z))\left((x \wedge y)^{-1} \wedge(x \wedge z)^{-1}\right) \leqslant(y \vee z)\left(y^{-1} \wedge z^{-1}\right)=1$, so $x \wedge(y \vee z) \leqslant(x \wedge y) \vee(x \wedge z)$.
By the same argument, $x \wedge \bigvee_{i} x_{i}=\bigvee_{i}\left(x \wedge x_{i}\right)$ for complete lattice groups.
4. $x=a b$, where $b \leqslant 1 \leqslant a$, iff $a=x_{+} t, b=t^{-1} x_{-}$(since $t:=x_{+}^{-1} a=$ $\left.x_{-} b^{-1}\right)$.
5. $x_{i} \wedge y_{j} \leqslant 1 \Rightarrow\left(x_{1} \cdots x_{n}\right) \wedge\left(y_{1} \cdots y_{m}\right) \leqslant 1$

Proof: It is enough to show $x \wedge y \leqslant 1, x \wedge z \leqslant 1$ imply $x \wedge y z \leqslant 1$. Let $a:=y \vee z$; then $(1 \vee a x)^{-1}\left(x \wedge a^{2}\right)=x \wedge x^{-1} a^{-1} x \wedge x^{-1} a \wedge a^{2} \leqslant 1 \wedge a^{2} \leqslant 1$ (using $\left.s \wedge t \leqslant(s t)_{+}\right)$, so $x \wedge a^{2} \leqslant 1 \vee a x ;$ so $x \wedge y z \leqslant x \wedge a^{2}=\left(x \wedge a^{2}\right) \wedge$ $(1 \vee a x)=\left(x \wedge a^{2}\right)-\vee(x \wedge a(x \wedge a)) \leqslant 1$.
6. $(x y)_{+}=x_{+}\left(x_{-} \vee y_{+}^{-1}\right)\left(x_{+}^{-1} \vee y_{-}\right) y_{+}$.
$|x \vee y|=(x \vee|y|) \wedge(|x| \vee y)$.
7. If x, y commute, then
(a) $x^{n} \leqslant y^{n} \Rightarrow x \leqslant y$.
(b) $(x \vee y)^{n}=x^{n} \vee y^{n},(x \wedge y)^{n}=x^{n} \wedge y^{n}$.

Proof: $(x \vee y)^{n}=\left(x\left(x^{-1} y\right)_{+}\right)^{n}=x^{n}\left(x^{-n} y^{n}\right)_{+}=x^{n} \vee y^{n}$.
8. $x, y \in G^{+}$are orthogonal when

$$
x \wedge y=1 \Leftrightarrow x \vee y=x y
$$

(since $x y=x(x \wedge y)^{-1} y=x \vee y$).
More generally, for mutually orthogonal elements, $x_{1} \cdots x_{n}=x_{1} \vee \cdots \vee x_{n}$ (by induction, since $x y \wedge z=(x \vee y) \wedge z=1$).
9. If $|x| \perp|y|$ then $y x=x y,(x y)_{+}=x_{+} y_{+},(x y)_{-}=x_{-} y_{-},|x y|=|x||y|=$ $|x| \vee|y|$.
Proof: $1 \leqslant x_{+} \wedge y_{-}^{-1} \leqslant|x| \wedge|y|=1$, etc., so $x_{ \pm}$, $y_{ \pm}$commute. $x y=$ $x_{+} y_{+} x_{-} y_{-}$, but $\left(x_{+} y_{+}\right) \wedge\left(x_{-} y_{-}\right)^{-1}=\left(x_{+} \vee y_{+}\right) \wedge\left(x_{-}^{-1} \vee y_{-}^{-1}\right)=1$, so by uniqueness, $(x y)_{+}=x_{+} y_{+},(x y)_{-}=x_{-} y_{-}$; thus $|x y|=(x y)_{+}(x y)_{-}^{-1}=$ $x_{+} y_{+} x_{-}^{-1} y_{-}^{-1}=|x||y|$.
10. (a) The \vee-irreducible elements of G^{+}are those a such that $[1, a]$ is a chain.
(b) The prime elements of G^{+}are its atoms. They are mutually orthogonal and generate a free abelian normal convex lattice subgroup $\left(\cong \mathbb{Z}^{(A)}\right)$.
Proof: $a=x(x \vee y)^{-1} a \vee y(x \vee y)^{-1} a$, so $a=x(x \vee y)^{-1} a$, say, i.e., $y \leqslant x$. If $1 \leqslant x \leqslant a$ then $a=x x^{-1} a$, so $a \leqslant x$ or $a \leqslant x^{-1} a$, i.e., $x=a$ or $x=1$.
11. A group morphism which preserves $\phi\left(x_{+}\right)=\phi(x)_{+}$, or equivalently orthogonality, is a morphism (since $\phi(x \vee y)=\phi(x) \phi\left(x^{-1} y\right)_{+}=\phi(x) \vee \phi(y)$; $\left.1=x \wedge y=x\left(x^{-1} y\right)_{+}, x_{+} \perp x_{-}^{-1}\right)$.
A morphism $G^{+} \rightarrow H^{+}$extends uniquely to $G \rightarrow H$ via $\phi(x):=\phi\left(x_{+}\right) \phi\left(x_{-}^{-1}\right)^{-1}$.
Proof: By uniqueness, $\phi\left(x_{ \pm}\right)=\phi(x)_{ \pm}$, so $\phi\left(x^{-1}\right)=\phi(x)^{-1} ; x_{-}^{-1}(x y)_{+} y_{-}^{-1}=$ $x_{+} y_{+} \vee x_{-}^{-1} y_{-}^{-1}$ implies $\phi(x y)_{+}=(\phi(x) \phi(y))_{+}$and $\phi(x y)_{-}=(\phi(x) \phi(y))_{-}$, hence $\phi(x y)=\phi(x) \phi(y)$; by the first part, ϕ is a morphism.
12. The polar of a subset A is the convex lattice subgroup

$$
A^{\perp}:=\{x:|x| \wedge|a|=1, \forall a \in A\}
$$

It is a dual map, i.e., $A \subseteq B^{\perp} \Leftrightarrow B \subseteq A^{\perp}$, hence $A \subseteq B \Rightarrow B^{\perp} \subseteq A^{\perp}$, $A \subseteq A^{\perp \perp}, A^{\perp}=A^{\perp \perp \perp}$. Also $A \cap A^{\perp} \subseteq\{1\},(A \cup B)^{\perp}=A^{\perp} \cap B^{\perp}$.
Proof: If $|x| \perp|a|,|y| \perp|a|$, then $|x y| \wedge|a| \leqslant|x||y||x| \wedge|a|=1$; similarly for $|x \vee y|$; if $x \leqslant z \leqslant y$ then $|z| \wedge|a| \leqslant(|x| \vee|y|) \wedge|a|=1$.
If A is normal, then so is A^{\perp} (since $\phi\left(A^{\perp}\right)=(\phi A)^{\perp}$ for any automorphism).
13. The Dedekind completion of an ordered group is a (lattice) group iff it is integrally closed, i.e., $\forall n \in \mathbb{N}, x^{n} \geqslant c \Rightarrow x \geqslant 1$.
Proof: For $A \neq \varnothing, X$, let $x \in U\left(A L\left(A^{-1}\right)\right.$), i.e., $A y \leqslant 1 \Rightarrow A y \leqslant x$, so $A y x^{-1} \leqslant 1$ and by induction, $A y \leqslant x^{n}$; hence $x \geqslant 1$, so $1^{L U} \subseteq$ $\left(A L\left(A^{-1}\right)\right)^{L U} ;$ but $A y \leqslant 1 \Rightarrow A y \subseteq L(1)=1^{L U}$, so $A \cdot L\left(A^{-1}\right)=$ $1^{L U}$ (note $L\left(A^{-1}\right)=L U L\left(A^{-1}\right)$). Conversely, if G is complete, let $a:=$ $\bigwedge_{n} x^{n}=1 \wedge a x \leqslant a x$, so $x \geqslant 1$.
14. If G is complete, then $G=A^{\perp} \oplus A^{\perp \perp}$.

Proof: Let $B:=A^{\perp \perp}$; for any x, let $b:=\bigvee\left(B^{+} \wedge x_{+}\right) \in B^{+}$and $c:=$ $x_{+} b^{-1} \geqslant 1$; for all $a \in B^{+}, 1 \leqslant a \wedge c=\left(a b \wedge x_{+}\right) b^{-1} \leqslant 1$ since $a b \in B^{+}$, so $c \in A^{\perp}$; similarly $x_{-}=b^{\prime} c^{\prime}$, so $x=b c b^{\prime} c^{\prime}=\left(b b^{\prime}\right)\left(c c^{\prime}\right) \in B \oplus A^{\perp}$.
15. There is an associated homogeneous topology generated by the open sets $B_{y}(a):=\left\{x:\left|x^{-1} a\right|<y\right\}$ where $y>1$. In this topology,

$$
\begin{gathered}
\mathcal{F} \rightarrow x \Leftrightarrow \quad \forall y>1, \exists A \in \mathcal{F}, z \in A \Rightarrow\left|z^{-1} x\right|<y \\
x_{n} \rightarrow x \Leftrightarrow \quad \forall y>1, \exists N, n \geqslant N \Rightarrow\left|x^{-1} x_{n}\right|<y
\end{gathered}
$$

The topology is T_{0} when there is a sequence $y_{n} \searrow 1$.

Convex Lattice Subgroups

1. For any convex lattice subgroup, $x \in H \Leftrightarrow x_{ \pm} \in H \Leftrightarrow|x| \in H$.
2. A subgroup is a convex lattice iff $x \wedge y, z \in H \Rightarrow x \wedge y z \in H$.

Proof: $x \wedge y \leqslant x \wedge y z_{+} \leqslant(x \wedge y) z_{+} \in H ;$ so $\left(x \wedge y z_{+}\right) z_{-} \leqslant x \wedge y z_{+} z_{-} \leqslant$ $x \wedge y z_{+} \in H$.
3. If H, K are convex lattice subgroups then

$$
H \cap K=1 \Leftrightarrow K \subseteq H^{\perp} \Leftrightarrow(1 \leqslant h k \Rightarrow 1 \leqslant h, k)
$$

In this case, $H K \cong H \times K$. (If $G=H K, H \cap K=1$, then $G \cong H \times H^{\perp}$.)
Proof: For $h \in H, k \in K, 1 \leqslant|h| \wedge|k| \leqslant|h| \in H$, so $|h| \wedge|k| \in H \cap K=1$, so h, k commute and $K \subseteq H^{\perp}$. In $H \times K \rightarrow H K,(h, k) \mapsto h k$; if $1 \leqslant h k$ then $1 \leqslant 1 \vee h^{-1} \leqslant 1 \vee k \in K$, so $1 \vee h^{-1} \in H \cap K=1$ and $1 \leqslant h$. Conversely, if $h \in H \cap K$, then $h h^{-1}=1$, so $h, h^{-1} \geqslant 1$.
4. The convex lattice subgroups of G form a (complete) Heyting algebra $\mathcal{C}(G)$ with $H \rightarrow K=\{x: \forall h \in H,|x| \wedge|h| \in K\}$ and a pseudo-complement $H^{\perp}=H \rightarrow 1$. A convex lattice subgroup is 'closed', i.e., $H^{\perp \perp}=H$, iff $H=K^{\perp}$.
5. The smallest convex lattice subgroup generated by A is

$$
\llbracket A \rrbracket=\left\{x:|x| \leqslant\left|a_{1}\right| \cdots\left|a_{n}\right|, \exists a_{i} \in A, n \in \mathbb{N}\right\}=\bigvee_{a \in A} \llbracket a \rrbracket
$$

For any automorphism, $\phi \llbracket A \rrbracket=\llbracket \phi A \rrbracket$; if A is normal, so is $\llbracket A \rrbracket$.

$$
\begin{aligned}
\llbracket A \rrbracket \cap \llbracket B \rrbracket & =\llbracket|a| \wedge|b|: a \in A, b \in B \rrbracket, \\
\llbracket A \rrbracket \vee \llbracket B \rrbracket & =\llbracket|a| \vee|b|: a \in A, b \in B \rrbracket, \\
\llbracket A \rrbracket^{\perp} & =A^{\perp}
\end{aligned}
$$

In particular, $\llbracket a \rrbracket=\{x:|x| \prec|a|\} ; \llbracket a \vee b \rrbracket=\llbracket a \rrbracket \vee \llbracket b \rrbracket=\llbracket a, b \rrbracket=\llbracket|a||b| \rrbracket$, $\llbracket a \wedge b \rrbracket=\llbracket a \rrbracket \cap \llbracket b \rrbracket$. Every finitely generated convex lattice subgroup is principal, $\llbracket a_{1}, \ldots, a_{n} \rrbracket=\llbracket\left|a_{1}\right| \vee \cdots \vee\left|a_{n}\right| \rrbracket . \llbracket a \rrbracket$ are the compact elements in $\mathcal{C}(G)$.
Proof: Let B be the given set; for $x, y \in B,|x y| \leqslant|x||y||x|,\left|x^{-1}\right|=$ $|x|,|x \vee y| \leqslant|x||y|$, and $x \leqslant z \leqslant y \Rightarrow|z| \leqslant|x| \vee|y|$, all being less than $\prod_{i}\left|a_{i}\right| ; 1 \leqslant|x| \leqslant \prod_{i=1}^{n}\left|a_{i}\right| \in \llbracket A \rrbracket$, so $|x|, x \in \llbracket A \rrbracket$ and $B \subseteq \llbracket A \rrbracket$. $a^{-1} \llbracket A \rrbracket a=\bigcap_{A \subseteq H} a^{-1} H a=\llbracket a^{-1} A a \rrbracket=\llbracket A \rrbracket$. If $|x| \leqslant \prod_{i}\left|a_{i}\right| \wedge\left|b_{i}\right| \leqslant$ $\prod_{i}\left|a_{i}\right|, \prod_{i}\left|b_{i}\right| ;|x| \leqslant \prod_{i}\left|a_{i}\right| \wedge \prod_{j}\left|b_{j}\right| \leqslant \prod_{i j}\left|a_{i}\right| \wedge\left|b_{j}\right| . \quad$ If $|x| \in \llbracket A \cup B \rrbracket$ then $|x| \leqslant \prod_{i}\left|a_{i}\right|\left|b_{i}\right| \leqslant \prod_{i}\left(\left|a_{i}\right| \vee\left|b_{i}\right|\right)^{2}$. If $x \in A^{\perp}$ and $y \in \llbracket A \rrbracket$, then $|x| \wedge|y| \leqslant|x| \wedge\left|a_{1}\right| \cdots\left|a_{n}\right|=1$.
6. For \vee-irreducible elements,
(a) For any x, either $x_{+} \perp a$ or $x_{-} \perp a$.
(b) Independent \vee-irreducibles are orthogonal, i.e., $b \notin a^{\perp \perp} \Rightarrow a \perp b$ and $a^{\perp \perp} \cap b^{\perp \perp}=1$.
(c) $a^{\perp \perp}$ is linearly ordered (maximal in $\mathcal{C}(G)$).
(d) a^{\perp} is a minimal polar (and a minimal prime).

Proof: For any x, either $a \wedge x_{-}^{-1} \leqslant a \wedge x_{+} \leqslant a$, so $a \wedge x_{-}^{-1}=a \wedge x_{-}^{-1} \wedge x_{+}=1$, or $a \wedge x_{+}=1$. In particular, for $x, y \in a^{\perp \perp}$, either $\left(y^{-1} x\right)_{+} \in a^{\perp} \cap a^{\perp \perp}=1$ or $y^{-1} x \geqslant 1$. If $b \notin a^{\perp \perp}$ and $y \in a^{\perp}, b \wedge y \neq 1$, then $y \wedge a \wedge b=1$ yet $a \wedge b, b \wedge y \in b^{\perp \perp}$, hence $a \wedge b=1$. If $c \in a^{\perp \perp} \cap b^{\perp \perp}$ then $|c| \leqslant a, b$ so $|c| \leqslant a \wedge b=1$. For any $y \in Y^{\perp} \subseteq a^{\perp \perp}, a^{\perp \perp}=y^{\perp \perp} \subseteq Y^{\perp} \subseteq a^{\perp \perp}$.
7. A convex lattice subgroup is said to be prime when it is \wedge-irreducible in $\mathcal{C}(G)$,

$$
P=H \cap K \Rightarrow P=H \text { or } P=K
$$

equivalently, P^{c} is closed under \wedge,

$$
x \wedge y \in P \Rightarrow x \in P \text { OR } y \in P
$$

(or $x \wedge y=1 \Rightarrow x \in P$ OR $y \in P$)
(a) The cosets of P are linearly ordered.
(b) The convex lattice subgroups containing P are linearly ordered.

Proof: If $x \wedge y \in P$, then $\llbracket P, x \rrbracket \cap \llbracket P, y \rrbracket=P \vee \llbracket x \wedge y \rrbracket=P$, so $P=\llbracket P, x \rrbracket$, say, and $x \in P$. Conversely, if $P=H \cap K$ and $h \in H \backslash P, k \in K$, then $1 \leqslant|h| \wedge|k| \in H \cap K=P$, so $|k|, k \in P$, and $K \subseteq P .(x \wedge y)^{-1}(x \wedge y)=1$, so $(x \wedge y)^{-1} x \in P$, say, i.e., $x P=(x \wedge y) P \leqslant y P$. If $P \subseteq H \cap K, h \in H$, $k \in K$ and $h P \leqslant k P$, say, then $h \leqslant k p$, so $1 \leqslant|h| \leqslant|k p| \in K$, hence $h \in K$; for any $x \in H, x \leqslant h^{-1} k p$, so $x P \leqslant h^{-1} k P$, hence $H \subseteq K$. If $x \wedge y=1$ and $P \subseteq \llbracket P, x \rrbracket \subseteq \llbracket P, y \rrbracket$, then $|x| \leqslant\left|p_{1}\right||y| \cdots\left|p_{n}\right||y|$; by considering $|x| \wedge|x| \leqslant\left|p_{1}\right| \cdots\left|p_{n}\right|(|y| \wedge|x|)$, etc., it follows $|x| \leqslant|p|$, i.e., $x \in P$.
8. (a) Every subgroup containing P is a lattice.
(b) The intersection of a chain of prime subgroups is prime.
(c) The pre-image of a prime subgroup is prime.
(d) Given a \wedge-sub-semi-lattice A, a maximal convex lattice subgroup in A^{c} is prime. Similarly, a convex lattice subgroup that maximally avoids being principal, is prime.
Proof: Let $a \in H$, then since $a_{+} \wedge a_{-}^{-1}=1, a_{+} \in P$ or $a_{-}^{-1} \in P$, so $a_{+}=a a_{-}^{-1} \in H$; if $a, b \in H$ then $a \vee b=a\left(a^{-1} b\right)_{+} \in H$. If $x \wedge y=1$ then $\phi(x) \wedge \phi(y)=1$, so $x \in \phi^{-1} P$, say. Given semi-lattice A, and $P=H \cap K$ but $P \neq H, K$, then $\exists a \in H \cap A, b \in K \cap A$; so $a \wedge b \in$ $(H \cap K) \cap A=P \cap A=\varnothing$ a contradiction. If $H=\llbracket a \rrbracket, K=\llbracket b \rrbracket$ then $P=H \cap K=\llbracket a \rrbracket \cap \llbracket b \rrbracket=\llbracket a \wedge b \rrbracket$ contradicts that P is not principal.
9. A regular prime subgroup is one which is completely \wedge-irreducible,

$$
P=\bigcap_{i} H_{i} \Rightarrow P=H_{i}, \exists i
$$

$\Leftrightarrow P$ is a maximal convex lattice subgroup in some $\{a\}^{c},(a \neq 1)$
Proof: For each $x \notin P$, there is a prime $Q_{x} \supseteq P$ which is maximal in $x^{\text {c }}$; so $P=\bigcap_{x \notin P} Q_{x}$ and $P=Q_{a}$ for some $a \notin P$. If $P=\bigcap_{i} H_{i}$, then $P \subset H_{i} \Rightarrow a \in H_{i}$, so $a \in \bigcap_{i} H_{i}=P$ unless $P=H_{i}$.
(a) Every convex lattice subgroup is the intersection of regular primes: $H=\bigcap\left\{P_{a}\right.$: regularprime, $\left.1 \leqslant a \notin H\right\}$.
(b) Only 1 belongs to all primes.
(c) $x \leqslant y \Leftrightarrow x P \leqslant y P$ for all regular P.

Proof: $H \subseteq P_{a}$ since P_{a} is maximal in $\{a\}^{c}$. If $x \notin H$ then $x_{+} \notin H \subseteq$ $P_{x_{+}}$, say (or $x_{-}^{-1}=\left(x^{-1}\right)_{+}$), so $x \notin P_{x_{+}}$. If $x P \leqslant y P$ for all P, then $(x \vee y) P=y P$, so $\left(y^{-1} x\right)_{+}=y^{-1}(x \vee y) \in P$; hence $\left(y^{-1} x\right)_{+}=1$, i.e., $x \leqslant y$.
10. For minimal primes, (every prime subgroup contains a minimal prime by Hausdorff's principle)
(a) P^{c} is a maximal \wedge-semi-lattice in 1^{c}.
(b) $\forall x \in P, \exists a \notin P, a \perp x$, i.e., $P=\bigcup_{a \notin P} a^{\perp}$.

Proof: If $1 \in A \subseteq P$ and A^{c} is a \wedge-semi-lattice, then A contains a maximal prime Q; then $P=Q=A$ by minimality.
If $x \in P$, so $|x| \in P$, then $P^{\mathrm{c}} \cup\left(|x| \wedge P^{\mathrm{c}}\right)$ is a semi-lattice containing P^{c} properly, so $1=|x| \wedge a$ for some $a \notin P$; conversely, if $x \in a^{\perp},|a| \notin P$, then $|x| \wedge|a|=1$ implies $|x|, x \in P$.

Structure of G

1. For a normal convex lattice subgroup H (ideal), G / H is again a lattice group with $x H \vee y H=(x \vee y) H, x H \wedge y H=(x \wedge y) H$. The ideals form a complete lattice $\mathcal{I}(G)$, as do the characteristic ideals (i.e., invariant under all automorphisms).
For any sub-lattice-group $L, L H$ is then a lattice group (since $x h \vee y k \in$ $x H \vee y H=(x \vee y) H \subseteq L H)$.
2. The isomorphism theorems hold: For any lattice subgroup L and ideals $H \subseteq K$,

$$
G / \operatorname{ker} \phi \cong \phi G, \quad \frac{L H}{H} \cong \frac{H}{H \cap L}, \quad \frac{G / H}{K / H} \cong \frac{G}{K}
$$

Proof: The map $x H \mapsto \phi(x)$ preserves positivity: $(x H)_{+}=x_{+} H \mapsto$ $\phi\left(x_{+}\right)=\phi(x)_{+}$. Similarly, $L \rightarrow L H / H, x \mapsto x H$, and $x H \mapsto x K$ preserve positivity, hence are morphisms.
3. $G:=\bigvee_{i} H_{i} \cong \sum_{i} H_{i} \Leftrightarrow H_{i} \unlhd G$ AND $H_{i} \cap \bigvee_{j \neq i} H_{j}=1 \Leftrightarrow H_{i} \cap H_{j}=$ $1(i \neq j)$ (via the map $\left.\left(x_{i}\right) \mapsto \prod_{i} x_{i}\right)$.
Proof: If $\prod_{i=1}^{n} x_{i} \geqslant 1$ then $x_{j}^{-1} \leqslant x_{1} \cdots x_{j-1} x_{j} \cdots x_{n}=: y_{j}$; so $\left(x_{j}\right)_{+}^{-1} \leqslant$ $\left(y_{j}\right)_{+}$, and $\left(x_{j}\right)_{-}^{-1} \in H_{j} \cap \bigvee_{i \neq j} H_{i}=1$, i.e., $x_{j} \geqslant 1$. If $H_{i} \cap H_{j}=1$, then $H_{i} \cap \bigvee_{j \neq i} H_{j}=\bigvee_{j \neq i}\left(H_{i} \cap H_{j}\right)=1$.
4. For ideals $H_{i}, \frac{G}{\bigcap_{i} H_{i}} \subseteq \prod_{i} \frac{G}{H_{i}}$ via the morphism $x \mapsto\left(x H_{i}\right)$.
5. For a prime ideal, G / P is a linearly ordered space. A minimal proper ideal (atom of $\mathcal{I}(G)$) is linear.
Proof: For any $x \in H \backslash 1$ minimal, $H \cap x^{\perp}=1$; so for $x, y \in H, x \wedge y=$ $1 \Rightarrow x=1$ or $y=1$, hence H is linear.
6. The intersection of all prime ideals is an ideal, here called the 'radical' $\operatorname{rad}(G)$, since $a^{-1} \bigcap_{i} P_{i} a=\bigcap_{i} a^{-1} P_{i} a=\bigcap_{i} P_{i}$.
7. The splitting of a lattice group by ideals can continue until, perhaps, all such subgroups are simple.
G is simple \Leftrightarrow all of $G^{+} \backslash 1$ are conjugates of each other.
8. $\llbracket a \rrbracket=\{x:|x| \prec|a|\}$ consists of $\llbracket x \rrbracket$ for each representative Archimedean class $|x| \prec|a|$. Extend the Archimedean classes by $[a]:=\{x:|x| \sim|a|\} ;$ then $\llbracket a \rrbracket=\bigcup_{|x| \prec|a|}[x]$.
9. A lattice group has no proper convex lattice subgroups iff it is an Archimedean linear group.
Proof: For any $x \neq 1, \llbracket x \rrbracket=G$, so for all $y,|y| \prec|x|$; similarly $|x| \prec|y|$, so Archimedean. $\{1\}$ is prime, so $G \cong G / 1$ is linear.
10. Any atoms of $\mathcal{C}(G)$ are Archimedean linear and mutually orthogonal $(1=$ $\llbracket a \rrbracket \cap \llbracket b \rrbracket=\llbracket a \wedge b \rrbracket)$. The sum of such atoms $\bigvee_{i} \llbracket a_{i} \rrbracket=\sum_{i} \llbracket a_{i} \rrbracket$ is here called the ' \mathcal{C}-socle' of G (an ideal). Similarly, the sum of the atomic ideals is the \mathcal{I}-socle.
11. Another socle is the sum $\bigvee_{a} a^{\perp \perp}$ for a orthogonal \vee-irreducibles. A group basis of G is a maximal orthogonal set of proper \vee-irreducibles (so $E^{\perp}=$ 1); there is a basis when the socle equals G.
Proof: If $x>1$ then $\exists y \in E, x \wedge y>1$, else E is not maximal; $x \wedge y$ is \vee irreducible. Conversely, let E be a maximal set of orthogonal \vee-irreducible elements. Then $x \in E^{\perp}$ and $x \geqslant e \geqslant 1$ imply $1=e \wedge x \geqslant e=1$.
12. A simple lattice group must either have trivial radical or have no proper prime ideals; it is either the sum of Archimedean linear groups or does not contain any. But otherwise, the simple lattice groups are not classified.

2.4 Representable Groups

are ordered groups that are embedded in a product of linearly ordered groups; equivalently, the radical is 1 . For example, $\mathbb{Z}^{n}, G / \operatorname{rad}(G)$.

Proof: If $G \subsetneq \prod_{i} X_{i}$ and π_{i} are the projections to X_{i}, then since 1 is prime, $\operatorname{ker} \pi_{i}$ are prime ideals; so $\operatorname{rad}(G) \subseteq \bigcap_{i} \operatorname{ker} \pi_{i}=\{1\}$. Conversely, $G / 1 \subsetneq$ $\prod{ }_{i} G / P_{i}$.

1. (a) $(x \wedge y)^{n}=x^{n} \wedge y^{n}$
(b) $x \wedge\left(y^{-1} x y\right)=1 \Rightarrow x=1$
(c) $x \perp y \Rightarrow x \perp z^{-1} y z$.

Proof: $\left(a_{i}\right)^{n} \wedge\left(b_{i}\right)^{n}=\left(a_{i}^{n} \wedge b_{i}^{n}\right)=\left(a_{i} \wedge b_{i}\right)^{n}$. If $x \wedge\left(y^{-1} x y\right)=1$ then $a_{i} \wedge\left(b_{i}^{-1} a_{i} b_{i}\right)=1$, so $a_{i}=1$. $a b a b \wedge a a=(a b \wedge a)^{2} \leqslant a b a$, so $b \wedge a^{-1} b^{-1} a \leqslant$ 1 , in particular $b_{+} \wedge a^{-1} b_{-}^{-1} a=1$; for $b=x y^{-1}, x \wedge y=1$, one gets $1=x \wedge a^{-1} y a$.
2. Every prime contains a prime ideal.

Proof: Let $N:=\bigcap_{x} x^{-1} P x$ be the largest normal subgroup in P; if $a \wedge b=$ 1 but $b \notin N$ then there is a $y, y^{-1} b y \notin P$; so $x^{-1} a x \wedge y^{-1} b y=1$, and $x^{-1} a x \in P$ for all x, i.e., $a \in N$.
3. Polar and minimal prime subgroups are normal (i.e., ideals).

Proof: A minimal prime subgroup satisfies $P=\bigcup\left\{x^{\perp}: 1 \leqslant x \notin P\right\}=$ $\bigcup\left\{a^{-1} x^{\perp} a: 1 \leqslant x \notin P\right\}=a^{-1} P a$. Conversely, if minimal primes are normal, then the radical is 1 (because every prime contains a minimal).
4. For any prime, either $x P \leqslant P x$ or $P x \leqslant x P$.

The weakly abelian lattice groups satisfy $\forall x \geqslant 1, y^{-1} x y \leqslant x^{2}$; then convex lattice subgroups are normal (if $x \in H,\left|a^{-1} x a\right|=a^{-1}|x| a \in H$).

2.4.1 Linearly Ordered Groups

when $G=G^{+} \cup G^{-}$, i.e., every element is comparable to 1 ; equivalently, a lattice group without proper orthogonal elements $x \perp y \Rightarrow x=1$ or $y=1$; or a lattice group all of whose convex subgroups are lattices. Every simple representable group is linearly ordered.

Examples:

- \mathbb{Q}^{+}with multiplication
- Free group on an alphabet, e.g. ${ }_{-}<a^{-1} b a<b<a b a^{-1}<a^{-1} b b a<b b$ and pure braid groups.
- The lex product (lexicographic) of linear groups $\prod_{i} \overleftarrow{T_{i}}$, e.g. \mathbb{Z}^{n} (not Archimedean).
- Torsion-less abelian groups can be made linear by embedding in \mathbb{Q}^{A} (or consider a maximal set such that $P \cap P^{-1}=\{1\}$; if $1 \neq a \notin P \cup P^{-1}$ then the larger monoids generated by P and a or a^{-1} do not satisfy this condition; so $\left(x a^{n}\right)^{-1}=y a^{m}$, i.e., $a^{-(m+n)}=x y \in P$, as well as $a^{r+s} \in P$; hence $a^{(m+n)(r+s)} \in P \cap P^{-1}$, so $m=n=r=s=0$ and $x=1=y$; thus $P \cup P^{-1}=X$.)
- \mathbb{Z}^{2} with usual addition and $(0,0) \leqslant(x, y) \Leftrightarrow \alpha x \leqslant y(\alpha \notin \mathbb{Q})$; e.g. $\alpha=\sqrt{2}$ gives $(0,0)<(-1,-1)<(0,1)<(-1,0)<(0,2)<(-1,1)$.
- Heisenberg group: \mathbb{Z}^{3} with $\left(\begin{array}{c}a_{1} \\ b_{1} \\ c_{1}\end{array}\right) *\left(\begin{array}{c}a_{2} \\ b_{2} \\ c_{2}\end{array}\right):=\left(\begin{array}{c}a_{1}+a_{2} \\ b_{1}+b_{2} \\ c_{1}+c_{2}+a_{1} b_{2}\end{array}\right)$ and lexicographic ordering; a non-abelian linearly ordered group.
- Pure braid group (using its free group ordering).

1. Linear groups are either discrete or order-dense (since if $a<b$ is a gap so are $b^{-1} a<1<a^{-1} b$).
2. Every convex subgroup, including $\{1\}$, is prime $(x \wedge y=1 \Rightarrow x=$ 1 or $y=1$), so $\mathcal{C}(G)$ is a linear order. A linear group with a maximal convex subgroup is of the type $\llbracket a \rrbracket$.
3. If $\left[x^{n}, y^{m}\right]=1(m, n \neq 0)$ then $[x, y]=1$.
4. The center is an ideal.
5. The Archimedean relation \prec is a coarser linear order on G : for any x, y either $x \prec y$ or $y \prec x$.
The regular subgroup not containing a is $P_{a}=[1] \cup \cdots \cup[b]=\{x:|x| \ll$ $|a|\}$.
6. (Neumann) Every linearly ordered group is the image of a free linearly ordered group.
7. (Mal'cev) $\mathbb{Z} G$ is embedded in a division ring.

2.5 Completely Reducible Lattice Groups

are lattice groups whose socle equals the group; i.e., G is the sum of simple lattice groups. Every element has an irredundant decomposition $x=a_{1} \vee \cdots a_{n}$ where $a_{i} \in X_{i}$.

The convex lattice subgroups satisfy ACC iff all such subgroups are principal iff G has a finite basis with each $a^{\perp \perp}$ satisfying ACC.

ACC lattice groups: they are complete, every element is compact.

2.6 Abelian Lattice Groups

They are representable since all prime subgroups are normal and $\operatorname{rad}(G)=$ $\bigcap_{P \text { prime }} P=\{1\}$; thus every abelian lattice group is a product of linearly ordered abelian groups.

Hahn's theorem: Embedded in a lex product of \mathbb{R}^{A} (where A is the number of Archimedean classes).

2.6.1 Archimedean Linear Groups

These are the simple abelian lattice groups.
Proposition 2

Hölder's embedding theorem

Every Archimedean linearly ordered group is embedded in $\mathbb{R},+$.

Proof: Fix $a>1$ and let $L_{x}:=\left\{m / n \in \mathbb{Q}: a^{m} \leqslant x^{n}\right\}, U_{x}:=\{m / n \in$ $\left.\mathbb{Q}: a^{m}>x^{n}\right\}$, a Dedekind cut of \mathbb{Q}, i.e., $L_{x} \cup U_{x}=\mathbb{Q}, L_{x} \cap U_{x}=\varnothing, L_{x}<U_{x}$. Define $\phi: G \rightarrow \mathbb{R}, x \mapsto \sup L_{x}=\inf U_{x} ;$ given $m / n \in L_{x}, r / s \in L_{y}$, i.e.,
$a^{m} \leqslant x^{n}, a^{r} \leqslant y^{s}$, either $x y \leqslant y x$ when $a^{m s+n r} \leqslant x^{n s} y^{n s} \leqslant(x y)^{n s}$ or $y x \leqslant x y$ when $a^{n r+m s} \leqslant y^{n s} x^{n s} \leqslant(x y)^{n s} ;$ so $L_{x}+L_{y} \subseteq L_{x y}$; similarly, $U_{x}+U_{y} \subseteq U_{x y}$, so $\phi(x y)=\phi(x)+\phi(y)$. If $\phi(x)=0$ then for all $m, n \geqslant 0, a^{-m} \leqslant x^{n}$, i.e., $1 \leqslant x \leqslant 1$. Hence ϕ is a 1-1 morphism.

Proposition 3

The only order-complete linearly ordered groups are $0, \mathbb{Z}$ and \mathbb{R}.
Proof: Complete linear orders are Archimedean since $1<x \ll y$ implies $\alpha:=\sup _{n} x^{n}$ exists, so $\alpha x=x$, a contradiction. If $\mathbb{Z} \subset R \subset \mathbb{R}$, then there is $0<\epsilon<1$, hence R is order-dense in \mathbb{R}; its completion is \mathbb{R}.

1. They are therefore abelian and can be completed.
2. Any morphism between Archimedean linear groups is of the type $x \mapsto r x$ (as subgroups of \mathbb{R}).
Proof: For $\phi \neq 0$, let $\phi(a)>0$; if $\frac{\phi(x)}{\phi(a)}<\frac{m}{n}<\frac{x}{a}$ then $m a<n x$ so $m \phi(a)<n \phi(x)$ a contradiction; so $\phi(x) / x=r:=\phi(a) / a$.

Ordered Rings

3 Ordered Modules and Rings

An ordered ring is a unital ring with an order such that + is monotone, and * is monotone with respect to positive elements, i.e., $a, b \geqslant 0 \Rightarrow a b \geqslant 0$.

An ordered module is an ordered abelian group X acted upon by an ordered ring R such that for $a \in R, x \in X$,

$$
a \geqslant 0, x \geqslant 0 \Rightarrow a x \geqslant 0
$$

Hence $a \geqslant 0$ AND $x \leqslant y \Rightarrow a x \leqslant a y ;$ similarly, $a \leqslant b$ AND $x \geqslant 0 \Rightarrow a x \leqslant b x$; if $a \leqslant 0$ then $a x \geqslant a y$ (since $\pm a(y-x) \geqslant 0$). For rings, $a \geqslant 0$ AND $b \leqslant c \Rightarrow$ $b a \leqslant c a$.

The morphisms are the maps that preserve $+, \cdot, \leqslant ;$ module morphisms need to preserve the action $T(a x)=a T x$. An ordered algebra is an ordered ring which is a module over itself (acting left and right).
X^{+}is closed under,$+ \cdot$, and uniquely determines the order on $X, x \leqslant y \Leftrightarrow$ $y-x \in X^{+}$; any subset $P \subseteq R$ such that $P+P \subseteq P, P P \subseteq P$ and $P \cap(-P)=0$ defines an order on R. (For X, replace with $R^{+} P \subseteq P$.)

Examples:

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ with their linear orders. \mathbb{Z} has a unique linear order $(1 \nless 0$, see later). \mathbb{Q} has a unique linear order that extends that of \mathbb{Z} : for $n>0$, $\frac{1}{n}+\cdots+\frac{1}{n}=1$, so $\frac{1}{n}>0$; so $m / n>0$ for $m, n>0$.
- \mathbb{Z} with $2 \mathbb{N} \geqslant 0 ; \mathbb{Q}$ with $\mathbb{N} \geqslant 0 ; \mathbb{C}$ with $\mathbb{R}^{+} \geqslant 0$.
- $\mathbb{Z}_{2} \times \mathbb{Z}$ with $(0,1),(1,2) \geqslant 0$.
- $\mathbb{Q}(\sqrt{2})$ with $0<1$ but $\sqrt{2}$ not comparable to 0 or 1 .
- A commutative formally real ring $\left(\sum_{n}^{N} x_{n}^{2}=0 \Rightarrow x_{n}=0\right)$ has a natural (minimal) positive cone $P:=\sum \prod R^{2}$ (finite terms). Equivalently, squares are positive and there are no nilpotents. If R is formally real, then so are $R[x, y, \ldots], R^{A}$, subrings (e.g. $\left.C(R)\right)$.
More generally, any ring with the property that finite sums of terms $a_{1} \cdots a_{2 n}$, where each a_{i} occurs an even number of times, can be zero only if each product is zero, has an order whose positives consist of such sums (such as squares).
- Scaled ring: For any ordered ring/module, pick any invertible central positive element λ, and let $a * x:=\lambda a x$; the new identity is λ^{-1}.
- Any module with the trivial order $X^{+}=0$. Every finite module, being a finite group, can only have this order.
- $\operatorname{Hom}(X)$, the morphisms of a commutative ordered monoid, with $0 \leqslant \phi \Leftrightarrow$ $0 \leqslant \phi(x), \forall x \geqslant 0$, AND $\phi(x) \leqslant 0, \forall x \leqslant 0$. It is pre-ordered, but ordered when $X=X^{+}+X^{-}$. Every ordered ring is embedded in such a ring, via the map $a \mapsto \phi_{a}$ where $\phi_{a}(x):=a x$.

Sub-modules (e.g. left ideals) and sub-rings are automatically ordered; in particular the generated sub-modules and sub-rings $\llbracket A \rrbracket$.

Products of ordered modules (rings) $X \times Y$ with

$$
(x, y) \geqslant 0 \Leftrightarrow x \geqslant 0 \text { AND } y \geqslant 0
$$

and functions X^{A}, with

$$
f \geqslant 0 \Leftrightarrow f(x) \geqslant 0 \forall x \in A
$$

are again ordered modules (rings). But $R \overleftarrow{\times} S$ is not, e.g. $(0,1),(1,-1)>0$ yet $(0,1)((1,-1)=(0,-1)<0$.

Matrices $M_{n}(R)$ with $0 \leqslant T \Leftrightarrow T_{i j} \geqslant 0, \forall i, j$ (i.e., $M_{n}\left(R^{+}\right)$.
Polynomials $R[x]$ with $R[x]^{+}$consisting of polynomials with (i) $p(a) \geqslant 0$ for all $a \in R$, (ii) all coefficients are positive, $R^{+}[x]$, or (iii) lex ordering: lowest order term is positive; apart from (iv) $p=\sum_{i} q_{i}^{2}$ when formally real; note (iv) \Rightarrow (i) \Rightarrow (iii). In $\mathbb{Z}[x], x$ satisfies (ii) but not (i) or (iv), $x^{2}-x+1$ satisfies (i) but not (ii) or (iv).

Series $R[[x]$] and Laurent series $R((x))$ with lex ordering.
Group Algebras: More generally, $R[\mathcal{C}]$ with convolution and $R[\mathcal{C}]^{+}=R^{+}[\mathcal{C}]$.
If R acts on X and $\phi: S \rightarrow R$ is a morphism, then S acts on X by $s \cdot x:=$ $\phi(s) x$.

1.		$X^{+} X^{-}$
R^{+}	+-	
R^{-}	$-\quad+$	

So $a \in R^{ \pm} \Rightarrow a^{2} \geqslant 0$ and $0 \leqslant a \leqslant b \Rightarrow a^{2} \leqslant b^{2}$. In particular $1 \nless 0$ (else $1<0 \Rightarrow 1^{2}>0$); for any idempotent $e \nless 0, e \ngtr 1$. But squares need not be positive, e.g. in $\mathbb{Z}[x],(x-1)^{2}=x^{2}-2 x+1$ is unrelated to 0 ; in $M_{2}(\mathbb{Z}),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)^{2}=-I<0$.
2. $0 \leqslant a \leqslant b$ AND $0 \leqslant x \leqslant y \Rightarrow a x \leqslant b y$.

In particular, $0 \leqslant a, b \leqslant 1 \Rightarrow a b \leqslant 1$.
$a \geqslant 1$ AND $x \leqslant y \Rightarrow a x \leqslant a y$ (since $(a-1)(y-x) \geqslant 0) ; a, b \geqslant 1 \Rightarrow$ $a b \geqslant 1$.
If $a b=0$ for $a, b \geqslant 0$, then $(a \wedge b)^{2}=0$.
If $x+y=0$ with $x, y \geqslant 0$ then $x=0=y$, i.e., $x>0, y \geqslant 0 \Rightarrow x+y>0$.
Note that $a x \geqslant 0, x>0 \nRightarrow a \geqslant 0$.
3. Convex sub-modules give ordered-module quotients with

$$
0+Y \leqslant x+Y \Leftrightarrow \exists y \in Y, x+y \geqslant 0
$$

Similarly, convex ideals for rings. For a discrete module, all sub-modules are convex.

A sub-module is convex iff $x, y \geqslant 0, x+y \in Y \Rightarrow x, y \in Y$. For example, $\operatorname{Annih}(x)$; more generally $[M: B]:=\{a \in R: a B \subseteq M\}$ when M is a convex sub-module and $B \geqslant 0$.
A convex ideal of $M_{n}(R)$ is of the form $M_{n}(I)$ with I a convex ideal.
4. Morphisms pull convex sub-modules (ideals) to convex sub-modules (ideals) $T^{-1} M$, in particular $\operatorname{ker} T=T^{-1} 0$.
5. When 1 and 0 are incomparable, one can distinguish the quasi-positive elements of X

$$
a \geqslant 0 \Rightarrow a x \geqslant 0
$$

They form an upper-closed sub-semi-module that contains X^{+}; and closed under - for R.

For any quasi-positive idempotent, $e R e$ is a subring with $(e R e)^{+}=e R^{+} e$.
Types of Ordered Modules/Rings:

- An ordered ring is reduced when it has no non-trivial positive/negative nilpotents, i.e., $a>0 \Rightarrow a^{2}>0$.
- It is an ordered domain when it has no non-trivial positive/negative zero divisors, i.e., $a, b>0 \Rightarrow a b>0$. Ordered domains are reduced.
- An ordered module is simple when it contains no proper convex submodules. A left-simple ordered ring is an ordered domain, since $a b=$ $0, b>0 \Rightarrow \operatorname{Annih}(b)=R$.
- It is Archimedean when $X,+$ is an Archimedean group. An Archimedean ring with $0<1$ is left-simple, since if $0 \neq a \in I$ then $1 \leqslant n|a| \in I$ and $1 \in I$. Simple ordered modules, acted on by rings with $R \prec 1$, are Archimedean, as $\{x: x \prec y\}$ is a convex sub-module.

3.0.2 Lattice Ordered Rings/Modules

Hence $X,+$ is an abelian lattice group,

$$
x+y \vee z=(x+y) \vee(x+z)
$$

Morphisms must preserve the operations $+, \cdot, \vee$. Note that an isomorphism is a bijective morphism.

Examples:

- $\mathbb{Z}[\sqrt{2}]$ with $a+b \sqrt{2} \geqslant 0 \Leftrightarrow b \leqslant a \leqslant 2 b$ (more generally, any angled sector less than π).
- \mathbb{Z}^{2} with standard,$+ \leqslant$ and (i) $(a, b)(c, d):=(a c+b d, a d+b c)$, (ii) $(a, b)(c, d):=$ $(a c, a d+b c+b d)$.
- Any abelian lattice group acted upon by its ring of automorphisms, with $\phi \geqslant 0 \Leftrightarrow \phi G^{+} \subseteq G^{+}$.
The bounded morphisms $\operatorname{Hom}_{B}(X)$ of a complete lattice group.
- $M_{2}(\mathbb{Z})$ with $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \geqslant 0 \Leftrightarrow 0 \leqslant c \leqslant a, 0 \leqslant d \leqslant b$. Then $0 \nless 1$.
- The infinite matrices over \mathbb{Z} with a finite number of non-zero entries; the subring of upper triangular matrices.
- Group algebras $\mathbb{F}[G]$, with $\mathbb{F}[G]^{+}:=\mathbb{F}^{+}[G]$.

Products $X \times Y$ and functions X^{A} are again lattice ordered. Matrices $M_{n}(R)$ are lattice ordered rings when R is a lattice ordered ring.

Every subset generates a sub-lattice-ring $\llbracket A \rrbracket$.

1. Recall from abelian lattice groups: $x_{+}:=x \vee 0, x_{-}:=x \wedge 0$,

$$
\begin{aligned}
& \qquad \begin{array}{rll}
x=x_{+}+x_{-} & (x \vee y)_{ \pm}=x_{ \pm} \vee y_{ \pm} & (-x)_{+}=-x_{-} \\
|x|=x_{+}-x_{-}=x \vee(-x) & |x+y| \leqslant|x|+|y| & |-x|=|x| \\
-|x| \leqslant x \leqslant|x| & |n x|=n|x| & |x \vee y| \leqslant|x|+|y| \\
-(x \vee y)=(-x) \wedge(-y) & x \vee y+x \wedge y=x+y & x \wedge y=0=x \wedge z \Rightarrow x \wedge(y+z)=0 \\
\qquad n(x \vee y)= \begin{cases}n x \vee n y, & n \geqslant 0 \\
n x \wedge n y, & n \leqslant 0\end{cases} \\
\qquad \begin{array}{l}
n x \geqslant 0 \Leftrightarrow x \geqslant 0
\end{array} \\
x \vee y=(x-y)_{+}+y & n x=0 \Leftrightarrow x=0 \\
\text { If }|x| \wedge|y|=0 \text { then }(x+y)_{ \pm}=x_{ \pm}+y_{ \pm} \text {and }|x+y|=|x|+|y|=|x| \vee|y| . \\
\text { Morphisms: }(T x)_{+}=T x_{+}, T|x|=|T x| .
\end{array}
\end{aligned}
$$

2. If $a \geqslant 0$ then $a(x \vee y) \geqslant a x \vee a y, a(x \wedge y) \leqslant a x \wedge a y$;

If $a \leqslant 0$ then $a(x \vee y) \leqslant a x \wedge a y, a(x \wedge y) \geqslant a x \vee a y$.
If $x \geqslant 0$ then $(a \vee b) x \geqslant a x \vee b x,(a \wedge b) x \leqslant a x \wedge b x$;
If $x \leqslant 0$ then $(a \vee b) x \leqslant a x \wedge b x,(a \wedge b) x \geqslant a x \vee b x$.
If $a, a^{-1}>0$ then $a(x \vee y)=a x \vee a y$ and $a(x \wedge y)=a x \wedge a y$, since $a x, a y \leqslant z \Leftrightarrow x, y \leqslant a^{-1} z$. Note that $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)>0$ but $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{-1} \ngtr 0$.
3. $|a x| \leqslant|a||x|$

Proof:

$$
\begin{aligned}
a x=\left(a_{+}+a_{-}\right)\left(x_{+}+x_{-}\right) & \leqslant a_{+} x_{+}-a_{+} x_{-}-a_{-} x_{+}+a_{-} x_{-}=|a||x| \\
& \geqslant-a_{+} x_{+}+a_{+} x_{-}+a_{-} x_{+}-a_{-} x_{-}=-|a||x|
\end{aligned}
$$

4. ℓ-sub-modules are the convex sub-lattice-modules; they are the kernels of morphisms, and X / Y is a lattice ordered module; similarly for ℓ-ideals and rings.
A sub-lattice-module is convex iff $x \in Y,|y| \leqslant|x| \Rightarrow y \in Y$.
An ℓ-ideal which is a prime subgroup gives a quotient which is linearly ordered.
5. First Isomorphism theorem: If T is a module morphism, then

$$
X / \operatorname{ker} T \cong \operatorname{im} T \quad \text { via } x \mapsto T x
$$

Proof: If $0 \leqslant T x$ then $T x=(T x)_{+}=T x_{+}$, so $T x_{-}=0$ and $x+\operatorname{ker} T \geqslant$ $\operatorname{ker} T$. An order-isomorphism is a \vee-isomorphism.
6. If $X=M+N$, both ℓ-submodules, then

$$
\frac{X}{M \cap N} \cong \frac{X}{M} \times \frac{X}{N}
$$

For ℓ-sub-modules, $\frac{X}{\cap_{i} Y_{i}} \subsetneq \prod_{i} \frac{X}{Y_{i}}$ via $x \mapsto\left(x+Y_{i}\right)$.
7. A coarser relation than the Archimedean one is $|x| \leqslant|a||y|$ for some $a \in R$. Let

$$
|A \cdot Y|:=\left\{x \in X:|x| \leqslant\left|a_{1}\right|\left|y_{1}\right|+\cdots+\left|a_{n}\right|\left|y_{n}\right|, a_{i} \in A, y_{i} \in Y, n \in \mathbb{N}\right\}
$$

Note that $\left|\sum_{i} a_{i} y_{i}\right| \leqslant \sum_{i}\left|a_{i}\right|\left|y_{i}\right|$, so $A \cdot Y \subseteq|A \cdot Y|$.
The ℓ-sub-module generated by a subset is $\widehat{\llbracket Y \rrbracket}=|R \cdot Y|$, in particular if Y is an sub-lattice-module then

$$
\widehat{\llbracket Y \rrbracket}=\{x \in X:|x| \leqslant|a||y|, a \in R, y \in Y\}
$$

e.g. $\llbracket \widehat{y_{1}, y_{2}} \rrbracket=\llbracket\left|y_{1} \widehat{|+|} y_{2}\right| \rrbracket$ so finitely generated modules are one-generated; $M \vee N=\{x:|x| \leqslant|a|(|y|+|z|), a \in R, y \in M, z \in N\}$. Similarly, the generated convex ideal is

$$
\widehat{\langle A\rangle}=\left\{b:|b| \leqslant|r|\left(\left|a_{1}\right|+\cdots+\left|a_{n}\right|\right)|s|, r, s \in R, a_{i} \in A, n \in \mathbb{N}\right\}
$$

The ℓ-sub-modules form a complete distributive lattice.
8. The ℓ-annihilator of a subset $B \subseteq X$ is

$$
\operatorname{Annih}_{\ell}(B):=\{a \in R:|a||x|=0, \forall x \in B\} \subseteq \operatorname{Annih}(B)
$$

is a left ℓ-ideal of R. Similarly the ℓ-zero-set of $A \subseteq R$ is

$$
\operatorname{Zeros}_{\ell}(A)=\{x \in X:|a||x|=0, \forall a \in A\} \subseteq \operatorname{Zeros}(A)
$$

is a convex lattice-subgroup (but not a module).
9. For the lattice of ℓ-ideals,
(a) I is an ℓ-nilpotent ideal iff $\left|I^{n}\right|=0$; it is nilpotent. If I is a nilpotent left ℓ-ideal, then so is $\widehat{\langle I\rangle}=|I \cdot R|$.
(b) I is an ℓ-nil ideal iff for $x \in I,|x|$ is nilpotent.
(c) S is an ℓ-semi-prime ideal iff $|I \cdot J| \subseteq S \Rightarrow I \cap J \subseteq S$ iff $|x| R|x| \subseteq S \Rightarrow x \in S$. A convex semi-prime ideal is ℓ-semi-prime.
(d) P is an ℓ-prime ideal iff $|I \cdot J| \subseteq P \Rightarrow I \subseteq P$ OR $J \subseteq P$ iff $|x| R|y| \subseteq P \Rightarrow x \in P$ OR $y \in P$. A convex prime ideal is ℓ-prime.
(e) P is an ℓ-primitive ideal iff P is the ℓ-core $\operatorname{Annih}_{\ell}(R / I)$ (the largest ℓ-left-ideal) of some maximal ℓ-left-ideal I.
10. Convex Radicals for Rings:
$\mathrm{Nil}_{\ell}:=\sum \ell$-nil ideals,
$\operatorname{Nilp}_{\ell}:=\{x:|x|$ supernilpotent $\}=\sum \ell$-nilpotent ideals.
Prime $_{\ell}:=\bigcap\{P: \ell$-prime ideal $\}$, (the smallest ℓ-semi-prime)
$\mathrm{Jac}_{\ell}:=\{x:|x|$ quasi-nilpotent $\}$

$$
\operatorname{Nilp}_{\ell} \subseteq \operatorname{Prime}_{\ell} \subseteq \mathrm{Nil}_{\ell} \subseteq \mathrm{Jac}_{\ell}
$$

Proof: Same as for rings, e.g. Prime ${ }_{\ell} \subseteq$ Nil $_{\ell}$: if $|x|$ is not nilpotent then there is an ℓ-prime which is maximal in not containing any $|x|^{n}$; so if $I, J \nsubseteq P$ then $|x|^{n} \in|I+P|,|x|^{m} \in \| J+P \mid$, hence $|x|^{n+m} \in|I+P| \cdot \mid J+$ $P|\subseteq|(I+P) \cdot(J+P)|=|I \cdot J+P|, \therefore I \cdot J \nsubseteq P$, so P is ℓ-prime and $|x| \notin P$.
11. Semi-prime Ordered Rings: when $\operatorname{Prime}_{\ell}(R)=0$, equivalently, it contains no proper ℓ-nilpotent ideals, $\left|I^{n}\right|=0 \Rightarrow I=0$, or 0 is ℓ-semi-prime

$$
|a| R|a|=0 \Rightarrow a=0
$$

$R /$ Prime $_{\ell} \subsetneq \prod$ prime ordered rings.
12. Prime Ordered Rings: when 0 is ℓ-prime, i.e., $|I \cdot J|=0 \Rightarrow I=0$ OR $J=$ 0 ; equivalently, for any left ℓ-ideal, $\operatorname{Annih}_{\ell}(I)=0$. Examples include $M_{n}(R)$ when R is a linearly ordered division ring.
13. A reduced ordered ring is embedded in a product of domains $\prod_{M} R / M$ where M are the minimal ℓ-primes. A reduced prime ordered ring is a domain.
14. If R is commutative, then $a b=(a \vee b)(a \wedge b)$, so $a \wedge b=0 \Rightarrow a b=0$; in particular, $a^{2}=\left(a_{+}+a_{-}\right)^{2}=a_{+}^{2}+a_{-}^{2} \geqslant 0$, including $1 \geqslant 0$. Thus a commutative lattice ordered ring without nilpotents is formally real.
15. Recall the topology generated by $B_{y}(x)$ for $y>0$. A coarser topology is that generated by $B_{a y}(x)$ for fixed y and $a \in R^{+}$.

3.1 Lattice Modules/Rings

A lattice module is a lattice-ordered module acted upon by a lattice-ordered ring such that

$$
\begin{aligned}
& a \geqslant 0 \Rightarrow a(x \vee y)=a x \vee a y \\
& x \geqslant 0 \Rightarrow(a \vee b) x=a x \vee b x
\end{aligned}
$$

The morphisms need to preserve $+, *, \vee$. A lattice ring is a lattice-ordered ring which is a lattice module over itself.

Thus $R^{+}, *$ is a lattice monoid.
Examples:

- $\mathbb{Z}^{2}, \mathbb{Q}^{n}$, e.g. $(1,0)(0,1)=(0,0)$.
- Vector lattices: a lattice ordered module acted upon by a linearly ordered division ring, since $a \vee b=a$ or b, and $a>0 \Rightarrow a^{-1}>0$. A Riesz space is a vector lattice over \mathbb{R}.
- Archimedean lattice ordered rings, since $x \wedge y=0 \Rightarrow a x \wedge y \leqslant n x \wedge y \leqslant$ $n(x \wedge y)=0$.

Sub-lattice-rings, images are again lattice-rings. Products, R^{A}, its sublattice ring $C(X)$ when X is a T_{2} space; but not matrices $M_{n}(R)$ or $R[G]$.

1. $a \geqslant 0 \Rightarrow a(x \wedge y)=a x \wedge a y, x \geqslant 0 \Rightarrow(a \wedge b) x=a x \wedge b x$
$a \leqslant 0 \Rightarrow a(x \vee y)=a x \wedge a y, x \leqslant 0 \Rightarrow(a \vee b) x=a x \wedge b x$.
$a x \wedge b y \leqslant(a \vee b)(x \wedge y) \leqslant a x \vee b y$
2. Equivalently,
(a) $|a x|=|a||x|$,
(b) $(a x)_{+}=a_{+} x_{+}+a_{-} x_{-},(a x)_{-}=a_{+} x_{-}+a_{-} x_{+}$
(c) $a \geqslant 0 \Rightarrow a x_{+} \wedge\left(-a x_{-}\right)=0$
$x \geqslant 0 \Rightarrow a_{+} x \wedge\left(-a_{-} x\right)=0$
(d) $a \geqslant 0$ AND $x \wedge y=0 \Rightarrow a x \wedge a y=0$,
$x \geqslant 0$ AND $a \wedge b=0 \Rightarrow a x \wedge b x=0$
(e) $a, b \geqslant 0$ AND $x \wedge y=0 \Rightarrow a x \wedge b y=0=x a \wedge y b$ (for rings)
$x, y \geqslant 0$ AND $a \wedge b=0 \Rightarrow a x \wedge b y=0$
Proof: (e) $0 \leqslant a x \wedge b y \leqslant(a \vee b)(x \wedge y)=0$. (e) \Rightarrow (d) \Rightarrow (c) trivial; $a x=\left(a_{+}+a_{-}\right)\left(x_{+}+x_{-}\right)=\left(a_{+} x_{+}+a_{-} x_{-}\right)+\left(a_{+} x_{-}+a_{-} x_{+}\right) ;$but $\left(a_{+} x_{+}+a_{-} x_{-}\right) \perp\left(a_{+} x_{-}+a_{-} x_{+}\right)$, so $(a x)_{+}=a_{+} x_{+}+a_{-} x_{-}$, etc.; hence $|a x|=(a x)_{+}-(a x)_{-}=|a||x|$. For $a \geqslant 0,2(a x)_{+}=a x+a|x|=2 a x_{+}$, so $a(x \vee y)=a(x-y)_{+}+a y=a x \vee a y$; similarly for $(a \vee b) x=a x \vee b x$.
Every lattice-ordered ring contains a lattice ring, namely $\{a \in R: x \wedge y=$ $0 \Rightarrow|a| x \wedge y=0=x|a| \wedge y\}$.
3. Hence $\operatorname{Annih}_{\ell}(B)=\operatorname{Annih}(B), \operatorname{Zeros}_{\ell}(A)=\operatorname{Zeros}(A)$. If M is a submodule, then $\operatorname{Annih}(M)$ is an ℓ-ideal; if I is an ideal, then $\operatorname{Zeros}(I)$ is an ℓ-submodule.
4. $|1| x=x=1_{+} x, 1_{-} x=0$

Proof: $(1 \wedge 0) x=x_{+} \wedge 0+x_{-} \vee 0=0$.
5. A^{\perp} is an ℓ-submodule (or ℓ-ideal) and $\widehat{\llbracket A \rrbracket} \cap A^{\perp}=0 ; \widehat{\llbracket A \rrbracket}^{\perp}=A^{\perp}$.

Proof: If $x \in \widehat{\llbracket A \rrbracket} \cap A^{\perp}$, then $|x| \wedge|x| \leqslant r\left(\left|a_{1}\right|+\cdots+\left|a_{n}\right|\right) \wedge|x|=0$.
6. If $v \wedge w=0$ for $v \in V, w \in W$, then $\widehat{\llbracket V \rrbracket} \cap \widehat{\llbracket W \rrbracket}=0$.

For a vector lattice, if $v_{i} \wedge v_{j}=0$ (non-zero) then $\sum_{i} a_{i} v_{i} \geqslant 0 \Leftrightarrow a_{i} \geqslant 0$. Thus v_{i} are linearly independent. Hence a finite dimensional vector lattice has a finite group basis.

Proof: If $a_{1} \leqslant 0$, then $0 \leqslant\left(-a_{1} v_{1}\right) \wedge v_{1} \leqslant\left(a_{2} v_{2}+\cdots+a_{n} v_{n}\right) \wedge v_{1}$, so $-a_{1} v_{1} \wedge v_{1}=0$ and $a_{1}=0$.
7. A convex sub-module of $X \times Y$ is of the form $M \times N$ with M, N convex sub-modules.
8. $R / \operatorname{Annih}(x) \cong R x$ for $x \geqslant 0$, via $a \mapsto a x$.
9. An indecomposable lattice module is linearly ordered.

Proof: $X=x_{+}^{\perp \perp} \oplus x_{+}^{\perp}$, hence either $x_{+} \in x_{+}^{\perp \perp}=0$ or $x_{-} \in x_{+}^{\perp}=0$.
10. Lattice modules and rings can be embedded in a product of linearly ordered modules/rings. (Equivalent to definition.)
Proof: The radical is 0 (as an abelian lattice group), so $X \subsetneq \prod_{P} X / P$ via $x \mapsto(x+P)_{P \in \mathcal{P}}$; the embedding is a lattice ring morphism. An ℓ-prime lattice ring is linearly ordered: $\widehat{\left\langle x_{+}\right\rangle} \cdot \widehat{\left\langle x_{-}\right\rangle} \subseteq \widehat{\left\langle x_{+}\right\rangle} \cap \widehat{\left\langle x_{-}\right\rangle}=0$, so $x_{+}=0$ or $x_{-}=0$.
11. $M_{n}(R)$ acts trivially on a lattice module $(A x=0)$, unless $n=1$.

Proof: Suppose $M_{n}(R)$ acts on a lattice module, hence on a linearly ordered module X; then $E_{1 j} x \leqslant E_{2 j} x$, say, so multiplying by $E_{i 1}$ and $E_{i 2}$ gives $E_{i j} x=0$.

Lattice Rings

12. $0 \leqslant 1$, so R contains \mathbb{Z} (unless $R=0$), since $1_{+}=1_{+} 1=1$.
13. Let $a_{\oplus}:=a \vee 1, a_{\ominus}:=a \wedge 1$, for $a \geqslant 0$. Then $a=a_{\oplus} a_{\ominus}$.
14. $a \perp b \Rightarrow a b=0$. In particular $a_{+} a_{-}=0$ and $1^{\perp}=0$.

Proof: $a \wedge b=0 \Rightarrow a b \wedge b=0 \Rightarrow a b \wedge a b=0$.
The converse holds iff the lattice ring is reduced (since $0=|a b| \geqslant(|a| \wedge$ $\left.|b|)^{2} \Rightarrow a \perp b\right)$.
15. Squares are positive: $a^{2}=|a|^{2} \geqslant 0$ since $a^{2}=\left(a_{+}+a_{-}\right)^{2}=a_{+}^{2}+a_{-}^{2} \geqslant 0$.
(a) If a is invertible, then $a>0 \Rightarrow a^{-1}>0\left(\right.$ since $\left.a^{-1}=\left(a^{-1}\right)^{2} a \geqslant 0\right)$.
(b) $a b+b a \leqslant a^{2}+b^{2}$ since $(a-b)^{2} \geqslant 0$.
(c) Idempotents satisfy $0 \leqslant e \leqslant 1$. Any proper idempotent decomposes $X=e X \oplus(1-e) X(e X$ is convex since $0 \leqslant y \leqslant e x \Rightarrow(1-e) y=0)$.
16. (a) $\left|a^{n}\right|=|a|^{n}($ possibly $n<0)$
(b) $|a|^{n} \leqslant 1 \Leftrightarrow|a| \leqslant 1$, i.e., $-1 \leqslant a^{n} \leqslant 1 \Rightarrow-1 \leqslant a \leqslant 1$ $|a|^{n} \geqslant 1 \Leftrightarrow|a| \geqslant 1$
(c) Nilpotents satisfy $|a| \ll 1$, since $n a$ is also nilpotent.
17. $A^{\perp}+B^{\perp} \subseteq(A B)^{\perp}$
18. Idempotents are central.

Proof: Embed in linear ordered rings; then $e=$ (0 or 1) (see later) so commutes.
19. As Archimedean classes, $a b-b a \ll a^{2}+b^{2}$. So an Archimedean lattice ring is commutative.
Proof: Assume a linear order, $0 \leqslant a \leqslant b$; then $n b=k a+r$ with $0 \leqslant r<a$; so $n(a b-b a)=a(n b)-(n b) a=[a, r]$, so $n|[a, b]|=|[a, r]| \leqslant 2 a^{2} \leqslant a^{2}+b^{2}$.
20. If $A \geqslant 0$ then its centralizer $Z(A)$ is a sub-lattice-ring, e.g. the center $Z(R)=Z\left(R^{+}\right)$.
21. If I is a convex left ideal then its core $[I: R]=\{a \in R: a R \subseteq I\} \subseteq I$ is an ℓ-ideal.
22. $\operatorname{Nilp}_{\ell}=\operatorname{Nil}_{\ell}, \operatorname{Nil}_{n}:=\left\{a: a^{n}=0\right\}$ are ℓ-nilpotent ideals.

Proof: Assume linearly ordered; $a^{m}=0=b^{n}, 0 \leqslant a \leqslant b \Rightarrow(a+b)^{n} \leqslant$ $(2 b)^{n}=2^{n} b^{n}=0 ;|r a| \leqslant|a r| \Rightarrow 0 \leqslant|r a|^{n} \leqslant|a r|^{n} \leqslant|a||r a|^{n-1}|r| \leqslant$ $\cdots \leqslant|a|^{n}|r|^{n}=0$, similarly for $|a r| \leqslant|r a|$. If $|b| \leqslant|a|$ then $0 \leqslant\left|b^{n}\right|=$ $|b|^{n} \leqslant|a|^{n}=\left|a^{n}\right|=0$ hence convex. If $a \in \operatorname{Nil}_{\ell}$, then $a \in \operatorname{Nil}_{n}$ for some n, so $a \in \sum_{n} \operatorname{Nil}_{n} \subseteq \operatorname{Nilp}_{\ell}$.
23. (Johnson) $R / \mathrm{Nil}_{\ell} \subsetneq \prod_{n} R_{n}$ linear domains.
24. Archimedean vector lattices over a field are isomorphic to \mathbb{R}^{n}.

3.2 Linearly Ordered Rings

Equivalently, a lattice-ordered ring with $x \wedge y=0 \Rightarrow x=0$ or $y=0$. They are lattice rings since $a(x \vee y)=a x=a x \vee a y$ (say).

Examples:

- \mathbb{Z}^{2} or \mathbb{Q}^{2} with lex ordering and $(a, b)(c, d):=(a c, a d+b c)$ or $(a, b)(c, d):=$ $(a d+b c, b d) ;$ non-Archimedean.
- Any commutative lattice-ordered domain, since $x \wedge y=0 \Rightarrow x y=0 \Rightarrow$ $x=0$ or $y=0$.
- $R[x], R[[x]], R((x))$ with lex ordering. The subring of terms $\sum_{n=-N}^{M} a_{n} x^{n}$.
- Ring of fractions is also linearly ordered (when commutative)

$$
a / b \leqslant c / d \Leftrightarrow a d \leqslant b c \quad(\text { for } b, d \geqslant 0)
$$

Hence a commutative linearly ordered ring extends to a linearly ordered field, e.g. \mathbb{Z} to \mathbb{Q}.

1. Equivalently, they are the indecomposable lattice rings (no proper idempotents).
Proof: For any idempotent, either $e \leqslant(1-e)$ so $e=e^{2} \leqslant 0$ or $(1-e) \leqslant e$ so $1-e \leqslant 0$.
2. $a x \leqslant a y \Rightarrow x \leqslant y$ if $a>0$, else $a \leqslant 0 \Rightarrow x \geqslant y$.
$a x=0(a \neq 0) \Rightarrow|x|<1($ else $|x| \geqslant 1 \Rightarrow|a| \leqslant|a||x|=|a x|=0)$.
3. Recall that linear orders have a natural T_{5} topology; which is connected iff order-complete and without cuts or gaps.
4. Reduced linearly ordered rings are domains.

3.2.1 Linearly Ordered Fields

Examples:

- \mathbb{Q}, \mathbb{R}
- $\mathbb{Q}(\sqrt{2})$ with (i) $\sqrt{2}>0$, (ii) $\sqrt{2}<0$.
- Hyperreal numbers: $\mathbb{R}^{\mathbb{N}}$ with $\left(a_{n}\right) \leqslant\left(b_{n}\right) \Leftrightarrow\left\{n \in \mathbb{N}: a_{n} \leqslant b_{n}\right\} \subseteq \mathcal{N}$, where \mathcal{N} is a maximal non-principal filter of \mathbb{N}; sequences need to be identified to give an order. Then $\epsilon:=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$ is an infinitesimal with inverse $\omega:=(1,2,3, \ldots)$. (This field is independent of \mathcal{N} if the continuum hypothesis is assumed.)

1. The prime subfield is \mathbb{Q}.
2. $x \mapsto a x$ for $a>0$ are precisely the $(+, \leqslant)$-automorphisms. The only $(+, *, \leqslant)$-automorphism is trivial.
3. If $x \leqslant y+a$ for all $a>0$, then $x \leqslant y$ (else $x-y \leqslant a:=(x-y) / 2)$.
4. A field can be linearly ordered \Leftrightarrow it can be lattice-ordered \Leftrightarrow it is formally real.

Proof: A formally real field can have its positives P extended maximally to Q, by Hausdorff's maximality principle. For $x \notin Q, Q-Q x \supseteq Q$ is also a positive set, so $Q-Q x=Q$, i.e., $-x \in Q$.
More generally a ring can be linearly ordered \Leftrightarrow proper sums of even products of elements cannot be zero (same proof). Note that for a division ring, an even product is a product of squares (since axay $=(a x)^{2}\left(x^{-1}\right)^{2} x y=$...).
5. A linearly ordered field is Archimedean $\Leftrightarrow \mathbb{N}$ is unbounded $\Leftrightarrow \mathbb{Q}$ is dense. ($F \backslash \mathbb{Q}$ is also dense unless empty.)
Proof: $\forall x, x \prec y \Rightarrow \mathbb{N} y$ is unbounded. If $0 \leqslant x<y$ then $(y-x)^{-1}<n$ and $\frac{1}{2 n} \mathbb{N}$ is unbounded; pick smallest $\frac{m}{2 n}>x$. So $x<\frac{m}{2 n} \leqslant x+\frac{1}{2 n}<$ $x+\frac{y-x}{2}<y$.
6. The extension field $F(a) \cong F[x] /\langle p\rangle$ (p irreducible) can be linearly ordered, if p changes sign. In particular when
(a) $a^{2}>0$ in F
(b) p is odd dimensional

Proof: Let p be a minimal-degree (m) counterexample, i.e., $F[x] /\langle p\rangle$ is not formally real, so $\sum_{n} p_{n}^{2}=0=p q(\bmod p)$ with $p_{n} \neq 0 ; q$ has degree at most $2(m-1)-m=m-2$. Since $p(x) q(x)=\sum_{n} p_{n}(x)^{2} \geqslant 0$ yet $p\left(x_{1}\right) p\left(x_{2}\right)<0$, then $q\left(x_{1}\right) q\left(x_{2}\right)<0$; decompose $q=q_{1} \cdots q_{r}$ into irreducibles, then $q_{1}\left(x_{1}\right) q_{1}\left(x_{2}\right)<0$ say, and $\sum_{n} p_{n}^{2}=p q=0\left(\bmod q_{1}\right)$, still not formally real. If $a^{2}>0$ then $x^{2}-a^{2}$ is irreducible in F and changes sign from 0 to $a^{2}+1$. If $p(x)=x^{n}\left(1+a_{n-1} / x+\cdots+a_{0} / x^{n}\right)$ is odd, then for x large enough the bracket is positive, hence $p(x)$ changes sign like x^{n}.
7. (Neumann) Every linearly ordered division ring can be extended to include \mathbb{R}.

Proposition 4

Every Archimedean linearly ordered ring is embedded in \mathbb{R}, except
 $$
R=0
$$

Proof: $R+$ is embedded in $\mathbb{R}+$ as lattice groups. The map $x \mapsto a \cdot x$ is a group automorphism on $R+$, hence of the type $x \mapsto r_{a} x$; let $r_{-a}:=-r_{a}$, then $a \mapsto r_{a}$ is a group morphism $\mathbb{R}+\rightarrow \mathbb{R}+$, so $r_{a}=s a$, with $s>0$, so $x \cdot y=r_{x} y=s x y, r_{x \cdot y}=s(x \cdot y)=s x s y=r_{x} r_{y}$, hence $x \mapsto r_{x}$ is an orderring embedding. (Thus Archimedean linear rings are characterized by their +-group.)

Hence, the only order-complete linearly ordered rings are $0, \mathbb{Z}$ and \mathbb{R}; and the Dedekind-completion of any Archimedean linearly ordered field is \mathbb{R}. Recall that these are also Cauchy-complete. (Note: The Dedekind completion of the hyperreal numbers is not closed under + , etc.)

3.2.2 Surreal Numbers

Every linearly ordered field is embedded in the surreal numbers.
Construction: A surreal number is a mapping from an ordinal number to $2:=\{1,-1\}$. The first few examples are sequences:

The surreal numbers in $2^{\mathbb{N}}$ contain the real numbers, as well as $\omega:=(1,1, \ldots)$, $\epsilon:=(1,-1,-1, \ldots)$.

If $A<B$ are sets of surreal numbers then $(A \mid B)$ is the least surreal number such that $A<x<B$; conversely, $x=\left(A_{x} \mid B_{x}\right)$ where

$$
\begin{aligned}
& A_{x}:=\left\{\left.x\right|_{\alpha}: \alpha<\operatorname{Dom}(x), x(\alpha)=-1\right\}, \\
& B_{x}:=\left\{\left.x\right|_{\alpha}: \alpha<\operatorname{Dom}(x), x(\alpha)=+1\right\}
\end{aligned}
$$

e.g. $0=(\mid), 3 / 2=(1 \mid 2)$. For $x=(A, B), y=(C, D)$, let

$$
\begin{aligned}
x<y & \Leftrightarrow \exists c \in C, x \leqslant c \text { OR } \exists b \in B, b \leqslant y \\
x+y:= & ((A+y) \cup(x+C) \mid(B+y) \cup(x+D)) \text { where } A+y:=\{a+y: a \in A\} \\
x y:= & (\{a y+x c-a c\} \cup\{b y+x d-b d\} \mid\{a y+x d-a d\} \cup\{b y+x c-b c\}) \\
& \quad \text { where } a \in A, b \in B, c \in C, d \in D
\end{aligned}
$$

Then it can be shown these operations give a field: $0+x=x, 1 x=x$, negatives $-x=(-B,-A)$, reciprocals exist, etc..

References

1. Henriksen, "A survey of f-rings and some of their generalizations"
2. Steinberg, "Lattice-ordered Rings and Modules"
