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1 Ordered Monoids

An ordered monoid is a set with a monoid operation · and an order relation
6, such that the operation is monotone:

x 6 y ⇒ ax 6 ay, xa 6 ya

Hence if x 6 y, a 6 b, then ax 6 by.
The morphisms are the monotone group morphisms (preserve both · and 6).
(Left-ordered monoids only have left multiplication being monotonic.)

Examples:

•

0 < 2 < 1
0 0 0 0
2 0 2 2
1 0 2 1

a b
a a ab
b ab b2

ab2 = 0
0 6 x 6 1

a b
a a ab
b ab b
a < 1 < b

a b
a a ab
b ba b
1 6 x
ab < ba

Other finite examples:

– 0 = an < an−1 < · · · < a < 1

– 0 < a < 1 < >, a < b < > with a2 = 0 = ab, b2 = a = ba

– 0 < a < b < c < >, a < 1 < >, xy = 0 except c2 = a, x1 = x = 1x,
x> = x = >x.

• Z with addition and 6.

N× with multiplication and 6 (but not Z× since (−1)(−1) 66 (−1)1).

• The endomorphism monoid of an ordered space with φ 6 ψ ⇔ φ(x) 6
ψ(x),∀x. Every ordered monoid is embedded in some such space (e.g. via
x 7→ fx, where fx(y) := xy).

• Free monoid : Words with the operation of concatenation and u 6 v if
letters of u are in v in the same order, e.g. abc6xaxxbxcx. 1 6 X.
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• Divisibility monoids: Any pure monoid modulo a normal subgroup of
invertibles, X/G, with xG 6 yG ⇔ x|y, meaning ax = y and xb = y
for some a, b. For example, N with + and 6; any ∨-semi-lattice with
multiplication ∨ (so y = a∨x ⇔ y > x); any integral domain with a field
of fractions F and invertibles G induce the abelian ordered group F×/G.
Satisfies 1 6 X.

More generally, any cancellative monoid with a sub-monoid P which is
central and whose only invertible is 1; let x 6 y ⇔ y = xa, ∃a ∈ P . For
example, XY where X is a commutative ordered group and P is the set
of monotonic functions which fix 1; F[x] with P the monic polynomials.
Or any monoid with P the sub-monoid of central idempotents.

• Generalized Minkowski space: Rn with x 6 y ⇔ y−x ∈ P where P is (a)
N×0n−1, or in general (b) any sub-monoid generated from A ⊆ R+×Rn−1
such as any convex rayed subset (e.g. cones).

• Any monoid with a zero and the inequalities 0 6 x.

Sub-monoids, products, and XA are also ordered monoids. X×1 and 1×X
are convex sub-monoids of X × Y .

An ordered monoid can act on an ordered set, in which case a 6 b, x 6 y
implies a ·x 6 b · y. If a monoid X acts on another Y , then their semi-direct (or
ordinal) product is X o Y with (a, b)(x, y) := (a(a · y), by) and the product or

lexicographic order. In particular, the lex product X
←
× Y with (a, b)(x, y) :=

(ax, by).
Since the intersection of convex sub-monoids is again of the same type, a

subset A generates a unique smallest convex sub-monoid Convex(A). Any mor-
phism pulls convex normal subgroups N to convex normal subgroups φ−1N .
The map x 7→ a−1xa is an automorphism.

Proposition 1

The completion of an ordered monoid
is again an ordered monoid.

Proof: Recall the Dedekind-MacNeille completion, where ALU := LU(A) and
xLU = ↓x. It is easy to prove ALUx = (Ax)LU , so ALUB ⊆ (AB)LU and
(ALUB)LU = (AB)LU . On the completion X̄ consisting of the ‘closed’ subsets
ALU = A, define A · B := (AB)LU . Then (A · B) · C = ((AB)LUC)LU =
(ABC)LU = A · (B · C). The identity of X̄ is 1LU = ↓ 1 since A · 1LU =
(A1)LU = A. A ⊆ B ⇒ (AC)LU ⊆ (BC)LU is trivial. X is embedded in X̄
since (xy)LU = xLUyLU .

�



Joseph Muscat 2015 3

1.0.1 Positive Cone

For any idempotent e, the subset ↑ e is an upper-closed directed sub-monoid
(x, y > e ⇒ xy > x, y)

In particular, the positive cone of X is X+ := ↑ 1 = {x : x > 1 }; it is a
convex normal sub-monoid (a−1xa > 1). Similarly X− := ↓ 1 = {x : x 6 1 }.

1. a > 1 and b > 1 ⇒ ab > 1; a, b > 1 and ab = 1 ⇒ a = 1 = b.

2. Any element of X+ or X− is either aperiodic or has period 1.

Proof: xn 6 xn+1 6 . . . 6 xn+m = xn.

3. The sub-monoid generated from X+ ∪X− is connected.

Proof: x = a+b−c+ · · · > b−c+ · · · 6 c+ · · · 6 1.

4. If φ : X → Y is a morphism then φX+ ⊆ Y +. For a sub-monoid Y + =
X+ ∩ Y .

5. If xiyj 6 yjxi then x1 · · ·xny1 · · · ym 6 y1 · · · ymx1 · · ·xn. In particular, if
xy 6 yx then xnyn 6 (xy)n 6 (yx)n 6 ynxn.

6. A top > or bottom ⊥ of the space are idempotents, but need not be the
same as any of 1 and 0. However, if 0 < 1 or 1 < 0 holds, then 0 is the
bottom or top (by duality, one can assume 0 to be the bottom).

7. If 0 < 1 then X+ has no zero divisors; dual statements hold.

8. The relation x ≺ y ⇔ ∃n ∈ N+, x 6 yn is a pre-order relation on X+; it
induces an equivalence relation x ≺ y and y ≺ x with equivalence classes
called Archimedean components; 1 is its own equivalence class; one can
define [x] ≺ [y] when x ≺ y. Note that x ≺ y ⇒ φ(x) ≺ φ(y), xn ∈ [x],
x, y ≺ a ⇒ xy ≺ a. One also writes x� y for x ≺ y but y 6≺ x, meaning
x is “infinitesimal” compared to y.

X is called “isolating” when 1 ≺ y ⇔ 1 6 y.

9. When X is commutative, each Archimedean component together with 1
is a sub-monoid. An Archimedean monoid is the case when there is only
one non-trivial component, so

1 < x 6 y ⇒ ∃n ∈ N, y < xn

i.e., xN is unbounded for x > 1.

1.1 The Group G(X) of Invertibles

1. G(X) is either trivial { 1 } or it has no maximum and minimum.

Proof: If a > 1 is a maximum then a 6 a2 6 a, so a = 1.
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2. If a > 1 is invertible, then it is aperiodic · · · < a−1 < 1 < a < a2 < · · · .
Periodic invertibles are incomparable to 1; so G+/− are torsion-free: xn =
1 ⇔ x = 1 (n > 1).

If a is invertible then ↑ a = aX+ = X+a is order-isomorphic to X+ (via
x 7→ a−1x).

Thus finite ordered groups have trivial order.

3. The order structure of G is determined by G+, x 6 y ⇔ x−1y ∈ G+. G+
and G− are closed under multiplication and conjugation. (Hence GX+ =
X+G and GX− are sub-monoids.)

(For any group, one can pick any sub-monoid for G+ with the property
that if x ∈ G+, x 6= 1, then x−1 6∈ G+, and define x 6 y ⇔ ax = y, xb = y
for some a, b ∈ G+.)

4. G− is a mirror image of G+ via the quasi-complement map x 7→ x−1,

x 6 y ⇔ y−1 6 x−1

so x ∈ G+ ⇔ x−1 ∈ G−; G+ ∩ G− = { 1 }.

5. A subgroup Y is convex ⇔ Y + is convex in X+.

The kernel of an ordered-group morphism φ : G→ H is a convex normal
subgroup. Conversely, for Y a convex normal subgroup, G/Y is a left-
ordered group, with

gY.hY := (gh)Y, gY 6 hY ⇔ gy1 6 hy2, ∃y1, y2 ∈ Y

(anti-symmetry requires convexity); then G/ kerφ ∼= imφ.

6. [xi, yj ] > 1 ⇒ [x1 · · ·xn, y1 · · · ym] > 1 (since [x, ab] = [x, b]b−1[x, a]b).

7. (Rhemtulla) The ordered group G is determined by its group ring ZG
(which can be embedded in a division ring).

1.2 Residuated Monoids

are ordered monoids such that for every pair x, y, there are elements x→y and
x←y,

xw 6 y ⇔ w 6 (x→y)

wx 6 y ⇔ w 6 (y←x)

equivalently the maps x∗ and ∗x have adjoints x→ and←x; equivalently x→y
is the largest element such that x(x→y) 6 y, and similarly (y←x)x 6 y.

(Dual relations: xw > y ⇔ w > (x\y), etc.)

Examples:

• Ordered groups, with x→ y = x−1y, y ← x = yx−1, x−1 = x→ 1. A
residuated monoid is a group when x(x→1) = 1 = (x→1)x.
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• The subsets of any monoid with AB := { ab : a ∈ A, b ∈ B } and A ⊆ B;
then A→B = {x : Ax ⊆ B }, B←A = {x : xA ⊆ B }. It has a zero
∅ and an identity { 1 } (the order is Boolean but it need not be a lattice
monoid).

• The additive subgroups of a unital ring with A∗B := [[AB]] = {
∑n
i=1 aibi :

ai ∈ A, bi ∈ B } and A ⊆ B; has a zero 0, an identity [[1]], is modular;
A→B = {x : Ax ⊆ B }.

• Bicyclic Monoid [[a, b : ba = 1]] with free monoid order; then ambn 6
am+rbn+r, idempotents are anbn. Equivalently, N2 with (m,n)(i, j) :=
(m− n+ max(n, i), j − i+ max(n, i)).

In what follows, every inequality has a dual form in which every occurrence
of x→y and xy are replaced by y←x and yx.

1. By the general results of adjoints, x∗ and ∗x preserve 6, and

x(x→y) 6 y 6 x→(xy), x(x→xy) = xy,

x→x(x→y) = x→y

y 6 z ⇒ x→y 6 x→z

y 6 z ⇒ y→x > z→x

Proof: If y 6 z then w 6 (x→y) ⇔ xw 6 y ⇒ xw 6 z ⇔ w 6 (x→z).

2. 1→x = x = x←1, x→x > 1, x(x→x) = x.

3. (z→y)x 6 (z→yx), x→y 6 zx→zy, (x→1)y 6 x→y.

(since z(z→y)x 6 yx)

4. (a) x→(y→z) = (yx)→z, hence x→y 6 (z→x)→(z→y)

(b) x→y←z is unambiguous.

(c) x 6 y←(x→y)

Proof: w 6 x→(y←z) ⇔ xw 6 y←z ⇔ xwz 6 y ⇔ w 6 (x→y)←z

5. (x→y)(y→z) 6 (x→z), (x→x)(x→x) = x→x
Hence x→y 6 (x→z)←(y→z)

6. If a bottom 0 exists, then it is a zero x0 = 0 = 0x; there would also be a
top > = 0→0 = 0←0, so 0→x = > = x→>. x→0 6= 0 iff x is a divisor
of zero.

7. When 1 is the top of the order,←,→ are implications,

x 6 y ⇔ x→y = 1

in particular (x→1) = 1 = (x→x) = (0→x).

8. When ∗ is commutative, x→y = y←x.
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2 Lattice Monoids

are sets with a monoid operation and a lattice order such that multiplication is
a lattice morphism,

x(y ∨ z) = (xy) ∨ (xz) x(y ∧ z) = (xy) ∧ (xz)
(y ∨ z)x = (yx) ∨ (zx) (y ∧ z)x = (yx) ∧ (zx)

They are ordered monoids since x 6 y ⇔ x ∨ y = y ⇒ ax ∨ ay = ay ⇔
ax 6 ay. But, conversely, an ordered monoid whose order is a lattice can only
guarantee x(y ∨ z) > (xy) ∨ (xz), etc.

Examples:

• The endomorphisms of a lattice with composition and

(φ ∨ ψ)(x) = φ(x) ∨ ψ(x).

• Any distributive lattice with ∧ as the operation.

• Free monoids of words from a finite alphabet with operation of joining
and linearly ordered according to first how many a’s, then b, ab, ba, aab,
etc.,

< b < bb < · · · < a < ba < ab < bba < bab < abb < aa <

baa < aba < aab < bbaa < baba < abba < baab < · · ·

Equivalently, replace a by (1 + a), etc., expand the resulting polynomials,
and compare using first degrees then lexicographic (for same degree).

• Factorial monoids (i.e., those that have unique factorizations into irre-
ducibles) with x 6 y ⇔ x|y, e.g. Q[x].

A lattice-sub-monoid is a subset that is closed under 1, ∗, ∧, ∨. X × Y
and XA are lattice monoids. Morphisms need to preserve both the monoid and
lattice structure.

1. (a) (x ∨ y)(a ∨ b) = (xa) ∨ (ya) ∨ (xb) ∨ (yb),

(b) (x ∨ y)(a ∧ b) = (xa ∧ xb) ∨ (ya ∧ yb) = (xa ∨ ya) ∧ (xb ∨ yb).
(c) xa ∧ yb 6 (x ∨ y)(a ∧ b) 6 xa ∨ yb
(d) If x, y commute then xy = (x ∨ y)(x ∧ y), and

(x ∨ y)n = xn ∨ xn−1y ∨ · · · ∨ yn, (x ∧ y)n = xn ∧ · · · ∧ yn.

Note, in general, x ∨ (yz) 6= (x ∨ y)(x ∨ z).

2. X+, X− are sub-lattice-monoids that generate X:

Let x+ := x ∨ 1, x− := x ∧ 1;
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(a) x− 6 x 6 x+ with x± ∈ X±.

(b) x = x+x− = x−x+.

(c) x 7→ x+ is a ∨-morphism and a closure map

x 6 y ⇒ x+ 6 y+, (x∨ y)+ = x+ ∨ y+, (x∧ y)+ 6 x+ ∧ y+

Dually, x 7→ x− is a ∧-morphism,

x 6 y ⇒ x− 6 y−, (x∧ y)− = x− ∧ y−, x− ∨ y− 6 (x∨ y)−

x++ = x+, x+− = 1 = x−+, x−− = x−

(d) x−y− 6 x− ∧ y− 6 x ∧ y 6 x+y− 6 x ∨ y 6 x+ ∨ y+ 6 x+y+
x−y− 6 (xy)− 6 (x+y)− 6 x+y− 6 (xy−)+ 6 (xy)+ 6 x+y+

(e) If x, y commute, then so do x±, y±.

(f) Morphisms preserve x±, e.g. (a−1xa)± = a−1x±a.

Proof: (x∨1)(x∧1) = x1 by 1(d). x+y− = (1∨x)(1∧y) = (1∧y)∨(x∧yx) =
y−x+.

3. xn > 1 ⇔ x > 1, xn = 1 ⇔ x = 1, xn 6 1 ⇔ x 6 1.

Proof: If xn > 1 then xn+1
− = x−(1∧· · ·∧xn−1) = xn− so xn+1 = xnx+ > 1.

If x2 > 1 then x = x+x− = (1∨x)∧(x∨x2) = (1∨x)∧(1∨x)2 = x+∧x2+ >
1; thus x2

n

> 1 ⇒ x > 1.

So every invertible element, except 1, is aperiodic; its generated subgroup
is isomorphic to Z as . . . < a−2 < a−1 < 1 < a < a2 < . . . or they are
mutually incomparable.

4. xna 6 ayn ⇔ xb 6 by for some a, b.

Proof: Let b := xn−1a ∨ xn−2ay ∨ · · · ∨ ayn−1.

5. G(X) is a lattice subgroup, since for invertible elements,

(x ∨ y)−1 = x−1 ∧ y−1, x ∨ y = x(x ∧ y)−1y,

(x−1)+ = (x−)−1, (x−1)− = (x+)−1

x ∨ x−1 > 1

Proof: 1 6 (x ∨ y)(x−1 ∧ y−1) 6 1. (x ∨ x−1)2 = x2 ∨ 1 ∨ x−2 > 1.

6. In X+, x and y are said to be orthogonal x ⊥ y when x ∧ y = 1 and
xy = yx. For x ⊥ y,

(a) (xy)− = x−y−

(b) 1 6 z ⇒ x ∧ (yz) = x ∧ z
(c) x ⊥ z ⇒ x ⊥ (yz)
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(d) xn ⊥ ym (n,m > 1)

(e) 1 6 z ≺ y ⇒ x ⊥ z

Proof: x ∧ yz = x(x ∧ y ∧ z) ∧ yz = (x ∧ y)(x ∧ z) = x ∧ z.
Mutually orthogonal positive elements generate a free abelian group.

Proof: If p · · · = q · · · , then 1 = p ∧ (q · · · ) = p ∧ (p · · · ) = p.

7. a is cancellative iff ax 6 ay ⇒ x 6 y.

8. The center Z(X) is a sub-lattice-monoid.

9. An element in X+ is called irreducible when for any x, y > 1,

a = xy ⇒ a = x or a = y.

In particular are the primes, when for any x, y > 1,

a 6 xy ⇒ a 6 x or a 6 y.

For example, atoms of X+.

Proof: x, y 6 xy = a 6 x or y. If a ∧ x, a ∧ y < a then a ∧ x = 1 = a ∧ y,
so a ∧ xy = 1.

2.1 Residuated Lattice Monoids

are residuated monoids which are lattice ordered. They are lattice monoids.

Examples:

• N with m→n = quotient(n/m).

• [0, 1] with xy := max(0, x+ y − 1); then x→y = min(1, 1− x+ y).

• The set of relations on X with the operation of composition and ∩,∪.
Then ρ→σ = { (x, y) : ρx ⊆ σy } and ρ←σ = { (x, y) : ρ−1y ⊆ σ−1x }.

• The ideals of a ring; the modules of a ring; complete lattice monoids. Much
of the theory of ideals of rings generalizes to residuated lattice monoids.

• Brouwerian algebra: residuated lattice monoids in which xy = x∧ y; they
are commutative and distributive lattices with X 6 1; a Heyting algebra
is the special case of a bounded Brouwerian algebra, while a generalized
Boolean algebra is the special case where (x → y) → y = x ∨ y. Such
examples can act as generalizations of classical logic.

• Matrices with coefficients from a Boolean algebra, withA 6 B ⇔ ∀i, j, aij 6
bij and AB = [

∨
k aik ∧ bkj ]; then A ∧ B = [aij ∧ bij ], A′ = [a′ij ],

A→B = (A>B′)′, B←A = (B′A>)′.
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1. x(y ∨ z) = (xy) ∨ (xz); more generally, (
∨
A)(
∨
B) =

∨
a∈A,b∈B ab.

Proof: xy, xz 6 x(y ∨ z); xy, xz 6 xy ∨ xz =: w, so y, z 6 x→ w and
x(y ∨ z) 6 x(x→w) 6 w.

2. x→,←x are ∧-morphisms; x←,→x are anti-∨-morphisms,

x→(y ∧ z) = (x→y) ∧ (x→z)

(y ∨ z)→x = (y→x) ∧ (z→x)

Proof: w 6 x→ (y ∧ z) ⇔ xw 6 y ∧ z ⇔ xw 6 y, z ⇔ w 6 x→
y and w 6 x→z.

More generally, (
∨
A)→x =

∨
a∈A(a→x), x→(

∧
A) =

∧
a∈A(x→a).

3. X− is again residuated with x→−y = (x→y)−, x←−y = (x←y)−.

4. Left/right conjugates of x by a are defined as (a→xa)−, (ax←a)−.

5. a is left cancellative iff a→ax = x (in particular a→a = 1).

Proof: w 6 a→ax ⇔ aw 6 ax ⇔ w 6 x.

A basic logic algebra is a bounded residuated lattice monoid such that x(x→
y) = x ∧ y = (x ← y)x and (x → y) ∨ (y → x) = 1 (hence distributive and
X 6 1). A GMV-algebra is a bounded residuated lattice monoid such that
y←x→y = x ∨ y.

2.2 Lattice Monoids with X− ⊆ G(X)

Example: A residuated lattice monoid that satisfies x(x→y)+ = x ∨ y = (y←
x)+x (since if x 6 1 then x→1, 1←x > 1, so x(x→1) = x∨ 1 = 1 = (1←x)x).

1. x+ ∧ (x−)−1 = 1; hence (x+)n ⊥ (x−)−m.

Proof: If y 6 x+, (x−)−1, then x−y 6 1 and x−y 6 x, so x−y 6 x−.

2. The decomposition x = x+x− is the unique one such that x+ ∈ X+,
x− ∈ X−, x+ ⊥ x−1− .

Proof: If x = ab, then b = (a ∧ b−1)b = x−, so a = x+x−b
−1 = x+.

3. The absolute value of an element is |x| := x+x
−1
− = x+ ∨ x−1− .

(a) 1 6 |x|, |x| = 1 ⇔ x = 1,

(b) x 6 |x|, |x| =

{
x when x > 1

x−1 when x 6 1

(c) a 6 x 6 b ⇒ |x| 6 |a| ∨ |b|
(d) |xy| 6 x+|y|x−1− ; if x, y commute, then |xy| 6 |x||y|.
(e) |x ∧ y|, |x ∨ y| 6 |x| ∨ |y| 6 |x||y|.
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(f) If x, y are invertible, then

i. |x| = x ∨ x−1 = |x−1|,
ii. |x|−1 = x ∧ x−1, so |x|−1 6 x 6 |x|,
iii. |xy| = (x ∨ y−1)(x−1 ∨ y).

(g) Morphisms preserve | · |, φ(|x|) = |φ(x)|, in particular |x−1yx| =
x−1|y|x.

Proof: If x+ 6 y, 1 6 x−y, then x+ 6 y ∧ xy = x−y. a 6 x 6 b
implies x+ 6 b+, x−1− 6 a−1− , so |x| = x+ ∨ x−1− 6 |b| ∨ |a|. |x ∨ y| =

(x∨ y)+ ∨ (x∨ y)−1− 6 x+ ∨ y+ ∨ (x−1− ∧ y−1− ) 6 |x| ∨ |y|. For x invertible,

|x| = x+x
−1
− = (1 ∨ x)(1 ∧ x)−1 = (1 ∨ x)(1 ∨ x−1) = x ∨ x−1 > 1.

(x ∨ y−1)(x−1 ∨ y) = 1 ∨ xy ∨ (xy)−1 = 1 ∨ |xy|.

4. (xn)+ = (x+)n, (xn)− = (x−)n, |xn| = |x|n.

Proof: (x−)n = (xn+ ∧ x−n− )xn− = xn ∧ 1 = (xn)−; xn+ = xn+x
−n
− xn− =

(xn+ ∨ x−n− )xn− = xn ∨ 1.

5. (Riesz Decomposition) For ai ∈ X−, [a1 · · · an, 1] = [a1, 1] · · · [an, 1], i.e.,

ab 6 x 6 1 and a, b 6 1 ⇒ x = cd where a 6 c 6 1, b 6 d 6 1

Proof: Given ab 6 x 6 1, a, b ∈ X−, let b := a ∨ x and d := xb−1 =
x(x−1 ∧ a−1) > 1 ∧ b = b.

6. For xi, yj 6 1,
∏
i,j(xi ∨ yj) 6 (x1 · · ·xn) ∨ (y1 · · · ym).

Proof: It is enough to show (x ∨ y)(x ∨ z) 6 x ∨ yz =: s; yz 6 s 6 1,
so s = ab with y 6 a 6 1, z 6 b 6 1; so x 6 ab 6 a, hence x ∨ y 6 a;
similarly, x ∨ z 6 b, and (x ∨ y)(x ∨ z) 6 ab = s.

7. If ai, bj 6 1 and a1 · · · an = b1 · · · bm, then there are unique cij 6 1 such
that ai = ci1 · · · cim, bj = c1j · · · cnj , ci+1,j · · · cn,j ⊥ ci,j+1 · · · ci,m.

Proof: For a1a2 = b1b2, let c11 := a1 ∨ b1, c12 := c−111 a1, c21 := c−111 b1,
c22 := a−11 c11b2 = a2 ∨ b2. Then c21c22 = c−111 b1(a2 ∨ b2) = a2.

8. A sub-monoid is a convex lattice-sub-monoid when |x| 6 |h| ⇒ x ∈ H
for any h ∈ H. Its convex closure is thus

|H| := {x : |x| 6 |h|, ∃h ∈ H }.

Proof: |h+| 6 |h|, |h−1− | 6 |h|, and |h∨ g| 6 |h||g| = ||h||g||, so h±, |h|, h∨
g ∈ H; if h 6 x 6 g then |x| 6 |h| ∨ |g|. 1 6 x+ ∨ x−1− = |x| 6 h ∈ H, so
x = x+x− ∈ H.

9. An ultrametric valuation is one which satisfies |xy| 6 |x|∨|y|; so |xn| = |x|.
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2.3 Lattice Groups

are ordered groups whose order is a lattice. They are residuated, hence satisfy
x(y ∨ z) = xy ∨ xz, but also x(x→y) = x and x(x→y)+ = x ∨ y.

Examples:

• Q× with multiplication and p 6 q ⇔ q/p ∈ N. It is Archimedean.

• The automorphism group of a lattice, e.g. Z with +,6; Aut6(Q); Aut[0, 1]
is simple. Every lattice group is embedded in an automorphism group of
some linear order.

• C(X,Y ) where Y is a lattice group; also measurable functions X → R.

• XoφY is a lattice group if X is a lattice group and Y is a linearly ordered
group.

Lattice groups are infinite, torsion-less, >-less and ⊥-less (except for the
trivial group). (Strictly speaking, a lattice must have a top/bottom, but these
cannot be invertible.) There is no equational property that characterizes lattice
groups among groups, or among lattices.

1. A subgroup is a lattice when it is closed under ∨, or even just x 7→ x+,
since x ∧ y = (x−1 ∨ y−1)−1, x ∨ y = x(x−1y)+.

2. x 7→ ax is a (∨, ∗)-automorphism, so the lattice is homogeneous.∨
i axi = a

∨
i xi (since axi 6 b ⇔

∨
i xi 6 a

−1b).

3. The lattice is distributive, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
Hence

(x ∨ y)± = x± ∨ y±, (x ∧ y)± = x± ∧ y±,

x+ ∧ y = (x ∧ y) ∨ y−, x− ∨ y = (x ∨ y) ∧ y+

Proof: x∧(y∨z) 6 (y∨z)y−1x∧(y∨z) = (y∨z)(y−1x∧1) = (y∨z)y−1(x∧
y). Hence (x∧ (y ∨ z))((x∧ y)−1 ∧ (x∧ z)−1) 6 (y ∨ z)(y−1 ∧ z−1) = 1, so
x ∧ (y ∨ z) 6 (x ∧ y) ∨ (x ∧ z).
By the same argument, x∧

∨
i xi =

∨
i(x∧xi) for complete lattice groups.

4. x = ab, where b 6 1 6 a, iff a = x+t, b = t−1x− (since t := x−1+ a =
x−b

−1).

5. xi ∧ yj 6 1 ⇒ (x1 · · ·xn) ∧ (y1 · · · ym) 6 1

Proof: It is enough to show x ∧ y 6 1, x ∧ z 6 1 imply x ∧ yz 6 1. Let
a := y∨ z; then (1∨ax)−1(x∧a2) = x∧x−1a−1x∧x−1a∧a2 6 1∧a2 6 1
(using s ∧ t 6 (st)+), so x ∧ a2 6 1 ∨ ax; so x ∧ yz 6 x ∧ a2 = (x ∧ a2) ∧
(1 ∨ ax) = (x ∧ a2)− ∨ (x ∧ a(x ∧ a)) 6 1.

6. (xy)+ = x+(x− ∨ y−1+ )(x−1+ ∨ y−)y+.

|x ∨ y| = (x ∨ |y|) ∧ (|x| ∨ y).
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7. If x, y commute, then

(a) xn 6 yn ⇒ x 6 y.

(b) (x ∨ y)n = xn ∨ yn, (x ∧ y)n = xn ∧ yn.

Proof: (x ∨ y)n = (x(x−1y)+)n = xn(x−nyn)+ = xn ∨ yn.

8. x, y ∈ G+ are orthogonal when

x ∧ y = 1 ⇔ x ∨ y = xy

(since xy = x(x ∧ y)−1y = x ∨ y).

More generally, for mutually orthogonal elements, x1 · · ·xn = x1∨· · ·∨xn
(by induction, since xy ∧ z = (x ∨ y) ∧ z = 1).

9. If |x| ⊥ |y| then yx = xy, (xy)+ = x+y+, (xy)− = x−y−, |xy| = |x||y| =
|x| ∨ |y|.
Proof: 1 6 x+ ∧ y−1− 6 |x| ∧ |y| = 1, etc., so x±, y± commute. xy =

x+y+x−y−, but (x+y+)∧ (x−y−)−1 = (x+ ∨ y+)∧ (x−1− ∨ y−1− ) = 1, so by

uniqueness, (xy)+ = x+y+, (xy)− = x−y−; thus |xy| = (xy)+(xy)−1− =

x+y+x
−1
− y−1− = |x||y|.

10. (a) The ∨-irreducible elements of G+ are those a such that [1, a] is a
chain.

(b) The prime elements of G+ are its atoms. They are mutually or-
thogonal and generate a free abelian normal convex lattice subgroup
(∼= Z(A)).

Proof: a = x(x∨ y)−1a∨ y(x∨ y)−1a, so a = x(x∨ y)−1a, say, i.e., y 6 x.
If 1 6 x 6 a then a = xx−1a, so a 6 x or a 6 x−1a, i.e., x = a or x = 1.

11. A group morphism which preserves φ(x+) = φ(x)+, or equivalently or-
thogonality, is a morphism (since φ(x∨ y) = φ(x)φ(x−1y)+ = φ(x)∨φ(y);
1 = x ∧ y = x(x−1y)+, x+ ⊥ x−1− ).

A morphismG+ → H+ extends uniquely toG→ H via φ(x) := φ(x+)φ(x−1− )−1.

Proof: By uniqueness, φ(x±) = φ(x)±, so φ(x−1) = φ(x)−1; x−1− (xy)+y
−1
− =

x+y+∨x−1− y−1− implies φ(xy)+ = (φ(x)φ(y))+ and φ(xy)− = (φ(x)φ(y))−,
hence φ(xy) = φ(x)φ(y); by the first part, φ is a morphism.

12. The polar of a subset A is the convex lattice subgroup

A⊥ := {x : |x| ∧ |a| = 1,∀a ∈ A }

It is a dual map, i.e., A ⊆ B⊥ ⇔ B ⊆ A⊥, hence A ⊆ B ⇒ B⊥ ⊆ A⊥,
A ⊆ A⊥⊥, A⊥ = A⊥⊥⊥. Also A ∩A⊥ ⊆ { 1 }, (A ∪B)⊥ = A⊥ ∩B⊥.

Proof: If |x| ⊥ |a|, |y| ⊥ |a|, then |xy| ∧ |a| 6 |x||y||x| ∧ |a| = 1; similarly
for |x ∨ y|; if x 6 z 6 y then |z| ∧ |a| 6 (|x| ∨ |y|) ∧ |a| = 1.

If A is normal, then so is A⊥ (since φ(A⊥) = (φA)⊥ for any automor-
phism).
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13. The Dedekind completion of an ordered group is a (lattice) group iff it is
integrally closed, i.e., ∀n ∈ N, xn > c ⇒ x > 1.

Proof: For A 6= ∅, X, let x ∈ U(AL(A−1)), i.e., Ay 6 1 ⇒ Ay 6 x,
so Ayx−1 6 1 and by induction, Ay 6 xn; hence x > 1, so 1LU ⊆
(AL(A−1))LU ; but Ay 6 1 ⇒ Ay ⊆ L(1) = 1LU , so A · L(A−1) =
1LU (note L(A−1) = LUL(A−1)). Conversely, if G is complete, let a :=∧
n x

n = 1 ∧ ax 6 ax, so x > 1.

14. If G is complete, then G = A⊥ ⊕A⊥⊥.

Proof: Let B := A⊥⊥; for any x, let b :=
∨

(B+ ∧ x+) ∈ B+ and c :=
x+b

−1 > 1; for all a ∈ B+, 1 6 a ∧ c = (ab ∧ x+)b−1 6 1 since ab ∈ B+,
so c ∈ A⊥; similarly x− = b′c′, so x = bcb′c′ = (bb′)(cc′) ∈ B ⊕A⊥.

15. There is an associated homogeneous topology generated by the open sets
By(a) := {x :

∣∣x−1a∣∣ < y } where y > 1. In this topology,

F → x ⇔ ∀y > 1,∃A ∈ F , z ∈ A ⇒
∣∣z−1x∣∣ < y

xn → x ⇔ ∀y > 1,∃N, n > N ⇒
∣∣x−1xn∣∣ < y

The topology is T0 when there is a sequence yn ↘ 1.

Convex Lattice Subgroups

1. For any convex lattice subgroup, x ∈ H ⇔ x± ∈ H ⇔ |x| ∈ H.

2. A subgroup is a convex lattice iff x ∧ y, z ∈ H ⇒ x ∧ yz ∈ H.

Proof: x ∧ y 6 x ∧ yz+ 6 (x ∧ y)z+ ∈ H; so (x ∧ yz+)z− 6 x ∧ yz+z− 6
x ∧ yz+ ∈ H.

3. If H,K are convex lattice subgroups then

H ∩K = 1 ⇔ K ⊆ H⊥ ⇔ (1 6 hk ⇒ 1 6 h, k)

In this case, HK ∼= H×K. (If G = HK, H ∩K = 1, then G ∼= H×H⊥.)

Proof: For h ∈ H, k ∈ K, 1 6 |h|∧ |k| 6 |h| ∈ H, so |h|∧ |k| ∈ H ∩K = 1,
so h, k commute and K ⊆ H⊥. In H ×K → HK, (h, k) 7→ hk; if 1 6 hk
then 1 6 1 ∨ h−1 6 1 ∨ k ∈ K, so 1 ∨ h−1 ∈ H ∩ K = 1 and 1 6 h.
Conversely, if h ∈ H ∩K, then hh−1 = 1, so h, h−1 > 1.

4. The convex lattice subgroups of G form a (complete) Heyting algebra C(G)
with H→K = {x : ∀h ∈ H, |x| ∧ |h| ∈ K } and a pseudo-complement
H⊥ = H→ 1. A convex lattice subgroup is ‘closed’, i.e., H⊥⊥ = H, iff
H = K⊥.

5. The smallest convex lattice subgroup generated by A is

[[A]] = {x : |x| 6 |a1| · · · |an|,∃ai ∈ A,n ∈ N } =
∨
a∈A

[[a]]
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For any automorphism, φ[[A]] = [[φA]]; if A is normal, so is [[A]].

[[A]] ∩ [[B]] = [[|a| ∧ |b| : a ∈ A, b ∈ B]],

[[A]] ∨ [[B]] = [[|a| ∨ |b| : a ∈ A, b ∈ B]],

[[A]]
⊥

= A⊥

In particular, [[a]] = {x : |x| ≺ |a| }; [[a ∨ b]] = [[a]] ∨ [[b]] = [[a, b]] = [[|a||b|]],
[[a ∧ b]] = [[a]] ∩ [[b]]. Every finitely generated convex lattice subgroup is
principal, [[a1, . . . , an]] = [[|a1| ∨ · · · ∨ |an|]]. [[a]] are the compact elements
in C(G).

Proof: Let B be the given set; for x, y ∈ B, |xy| 6 |x||y||x|, |x−1| =
|x|, |x ∨ y| 6 |x||y|, and x 6 z 6 y ⇒ |z| 6 |x| ∨ |y|, all being less
than

∏
i |ai|; 1 6 |x| 6

∏n
i=1 |ai| ∈ [[A]], so |x|, x ∈ [[A]] and B ⊆ [[A]].

a−1[[A]]a =
⋂
A⊆H a

−1Ha = [[a−1Aa]] = [[A]]. If |x| 6
∏
i |ai| ∧ |bi| 6∏

i |ai|,
∏
i |bi|; |x| 6

∏
i |ai| ∧

∏
j |bj | 6

∏
ij |ai| ∧ |bj |. If |x| ∈ [[A ∪ B]]

then |x| 6
∏
i |ai||bi| 6

∏
i(|ai| ∨ |bi|)2. If x ∈ A⊥ and y ∈ [[A]], then

|x| ∧ |y| 6 |x| ∧ |a1| · · · |an| = 1.

6. For ∨-irreducible elements,

(a) For any x, either x+ ⊥ a or x− ⊥ a.

(b) Independent ∨-irreducibles are orthogonal, i.e., b /∈ a⊥⊥ ⇒ a ⊥ b
and a⊥⊥ ∩ b⊥⊥ = 1.

(c) a⊥⊥ is linearly ordered (maximal in C(G)).

(d) a⊥ is a minimal polar (and a minimal prime).

Proof: For any x, either a∧x−1− 6 a∧x+ 6 a, so a∧x−1− = a∧x−1− ∧x+ = 1,
or a∧x+ = 1. In particular, for x, y ∈ a⊥⊥, either (y−1x)+ ∈ a⊥∩a⊥⊥ = 1
or y−1x > 1. If b /∈ a⊥⊥ and y ∈ a⊥, b ∧ y 6= 1, then y ∧ a ∧ b = 1 yet
a ∧ b, b ∧ y ∈ b⊥⊥, hence a ∧ b = 1. If c ∈ a⊥⊥ ∩ b⊥⊥ then |c| 6 a, b so
|c| 6 a ∧ b = 1. For any y ∈ Y ⊥ ⊆ a⊥⊥, a⊥⊥ = y⊥⊥ ⊆ Y ⊥ ⊆ a⊥⊥.

7. A convex lattice subgroup is said to be prime when it is ∧-irreducible in
C(G),

P = H ∩K ⇒ P = H or P = K

equivalently, P c is closed under ∧,

x ∧ y ∈ P ⇒ x ∈ P or y ∈ P

(or x ∧ y = 1 ⇒ x ∈ P or y ∈ P )

(a) The cosets of P are linearly ordered.

(b) The convex lattice subgroups containing P are linearly ordered.
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Proof: If x∧ y ∈ P , then [[P, x]]∩ [[P, y]] = P ∨ [[x∧ y]] = P , so P = [[P, x]],
say, and x ∈ P . Conversely, if P = H ∩K and h ∈ HrP , k ∈ K, then
1 6 |h|∧ |k| ∈ H ∩K = P , so |k|, k ∈ P , and K ⊆ P . (x∧y)−1(x∧y) = 1,
so (x ∧ y)−1x ∈ P , say, i.e., xP = (x ∧ y)P 6 yP . If P ⊆ H ∩K, h ∈ H,
k ∈ K and hP 6 kP , say, then h 6 kp, so 1 6 |h| 6 |kp| ∈ K, hence
h ∈ K; for any x ∈ H, x 6 h−1kp, so xP 6 h−1kP , hence H ⊆ K.
If x ∧ y = 1 and P ⊆ [[P, x]] ⊆ [[P, y]], then |x| 6 |p1||y| · · · |pn||y|; by
considering |x| ∧ |x| 6 |p1| · · · |pn|(|y| ∧ |x|), etc., it follows |x| 6 |p|, i.e.,
x ∈ P .

8. (a) Every subgroup containing P is a lattice.

(b) The intersection of a chain of prime subgroups is prime.

(c) The pre-image of a prime subgroup is prime.

(d) Given a ∧-sub-semi-lattice A, a maximal convex lattice subgroup in
Ac is prime. Similarly, a convex lattice subgroup that maximally
avoids being principal, is prime.

Proof: Let a ∈ H, then since a+ ∧ a−1− = 1, a+ ∈ P or a−1− ∈ P , so

a+ = aa−1− ∈ H; if a, b ∈ H then a ∨ b = a(a−1b)+ ∈ H. If x ∧ y = 1
then φ(x) ∧ φ(y) = 1, so x ∈ φ−1P , say. Given semi-lattice A, and
P = H ∩ K but P 6= H,K, then ∃a ∈ H ∩ A, b ∈ K ∩ A; so a ∧ b ∈
(H ∩ K) ∩ A = P ∩ A = ∅ a contradiction. If H = [[a]], K = [[b]] then
P = H ∩K = [[a]] ∩ [[b]] = [[a ∧ b]] contradicts that P is not principal.

9. A regular prime subgroup is one which is completely ∧-irreducible,

P =
⋂
i

Hi ⇒ P = Hi, ∃i

⇔ P is a maximal convex lattice subgroup in some { a }c, (a 6= 1)

Proof: For each x /∈ P , there is a prime Qx ⊇ P which is maximal in
xc; so P =

⋂
x/∈P Qx and P = Qa for some a /∈ P . If P =

⋂
iHi, then

P ⊂ Hi ⇒ a ∈ Hi, so a ∈
⋂
iHi = P unless P = Hi.

(a) Every convex lattice subgroup is the intersection of regular primes:
H =

⋂
{Pa : regularprime, 1 6 a /∈ H }.

(b) Only 1 belongs to all primes.

(c) x 6 y ⇔ xP 6 yP for all regular P .

Proof: H ⊆ Pa since Pa is maximal in { a }c. If x /∈ H then x+ /∈ H ⊆
Px+

, say (or x−1− = (x−1)+), so x /∈ Px+
. If xP 6 yP for all P , then

(x ∨ y)P = yP , so (y−1x)+ = y−1(x ∨ y) ∈ P ; hence (y−1x)+ = 1, i.e.,
x 6 y.

10. For minimal primes, (every prime subgroup contains a minimal prime by
Hausdorff’s principle)
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(a) P c is a maximal ∧-semi-lattice in 1c.

(b) ∀x ∈ P,∃a /∈ P, a ⊥ x, i.e., P =
⋃
a/∈P a

⊥.

Proof: If 1 ∈ A ⊆ P and Ac is a ∧-semi-lattice, then A contains a maximal
prime Q; then P = Q = A by minimality.

If x ∈ P , so |x| ∈ P , then P c ∪ (|x| ∧ P c) is a semi-lattice containing P c

properly, so 1 = |x| ∧ a for some a /∈ P ; conversely, if x ∈ a⊥, |a| /∈ P ,
then |x| ∧ |a| = 1 implies |x|, x ∈ P .

Structure of G

1. For a normal convex lattice subgroup H (ideal), G/H is again a lattice
group with xH ∨ yH = (x∨ y)H, xH ∧ yH = (x∧ y)H. The ideals form a
complete lattice I(G), as do the characteristic ideals (i.e., invariant under
all automorphisms).

For any sub-lattice-group L, LH is then a lattice group (since xh ∨ yk ∈
xH ∨ yH = (x ∨ y)H ⊆ LH).

2. The isomorphism theorems hold: For any lattice subgroup L and ideals
H ⊆ K,

G/ kerφ ∼= φG,
LH

H
∼=

H

H ∩ L
,

G/H

K/H
∼=
G

K

Proof: The map xH 7→ φ(x) preserves positivity: (xH)+ = x+H 7→
φ(x+) = φ(x)+. Similarly, L→ LH/H, x 7→ xH, and xH 7→ xK preserve
positivity, hence are morphisms.

3. G :=
∨
iHi

∼=
∑
iHi ⇔ Hi E G and Hi ∩

∨
j 6=iHj = 1 ⇔ Hi ∩ Hj =

1(i 6= j) (via the map (xi) 7→
∏
i xi).

Proof: If
∏n
i=1 xi > 1 then x−1j 6 x1 · · ·xj−1xj · · ·xn =: yj ; so (xj)

−1
+ 6

(yj)+, and (xj)
−1
− ∈ Hj ∩

∨
i6=j Hi = 1, i.e., xj > 1. If Hi ∩Hj = 1, then

Hi ∩
∨
j 6=iHj =

∨
j 6=i(Hi ∩Hj) = 1.

4. For ideals Hi,
G⋂
iHi

⊂∼
∏
i
G
Hi

via the morphism x 7→ (xHi).

5. For a prime ideal, G/P is a linearly ordered space. A minimal proper ideal
(atom of I(G)) is linear.

Proof: For any x ∈ Hr1 minimal, H ∩ x⊥ = 1; so for x, y ∈ H, x ∧ y =
1 ⇒ x = 1 or y = 1, hence H is linear.

6. The intersection of all prime ideals is an ideal, here called the ‘radical’
rad(G), since a−1

⋂
i Pia =

⋂
i a
−1Pia =

⋂
i Pi.

7. The splitting of a lattice group by ideals can continue until, perhaps, all
such subgroups are simple.

G is simple ⇔ all of G+r1 are conjugates of each other.
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8. [[a]] = {x : |x| ≺ |a| } consists of [[x]] for each representative Archimedean
class |x| ≺ |a|. Extend the Archimedean classes by [a] := {x : |x| ∼ |a| };
then [[a]] =

⋃
|x|≺|a|[x].

9. A lattice group has no proper convex lattice subgroups iff it is an Archimedean
linear group.

Proof: For any x 6= 1, [[x]] = G, so for all y, |y| ≺ |x|; similarly |x| ≺ |y|,
so Archimedean. { 1 } is prime, so G ∼= G/1 is linear.

10. Any atoms of C(G) are Archimedean linear and mutually orthogonal (1 =
[[a]]∩ [[b]] = [[a∧b]]). The sum of such atoms

∨
i [[ai]] =

∑
i [[ai]] is here called

the ‘C-socle’ of G (an ideal). Similarly, the sum of the atomic ideals is the
I-socle.

11. Another socle is the sum
∨
a a
⊥⊥ for a orthogonal ∨-irreducibles. A group

basis of G is a maximal orthogonal set of proper ∨-irreducibles (so E⊥ =
1); there is a basis when the socle equals G.

Proof: If x > 1 then ∃y ∈ E, x ∧ y > 1, else E is not maximal; x ∧ y is ∨-
irreducible. Conversely, let E be a maximal set of orthogonal ∨-irreducible
elements. Then x ∈ E⊥ and x > e > 1 imply 1 = e ∧ x > e = 1.

12. A simple lattice group must either have trivial radical or have no proper
prime ideals; it is either the sum of Archimedean linear groups or does not
contain any. But otherwise, the simple lattice groups are not classified.

2.4 Representable Groups

are ordered groups that are embedded in a product of linearly ordered groups;
equivalently, the radical is 1. For example, Zn, G/rad(G).

Proof: If G ⊂∼
∏
iXi and πi are the projections to Xi, then since 1 is prime,

kerπi are prime ideals; so rad(G) ⊆
⋂
i kerπi = { 1 }. Conversely, G/1 ⊂∼∏

iG/Pi.

1. (a) (x ∧ y)n = xn ∧ yn

(b) x ∧ (y−1xy) = 1 ⇒ x = 1

(c) x ⊥ y ⇒ x ⊥ z−1yz.
Proof: (ai)

n ∧ (bi)
n = (ani ∧ bni ) = (ai ∧ bi)n. If x ∧ (y−1xy) = 1 then

ai∧(b−1i aibi) = 1, so ai = 1. abab∧aa = (ab∧a)2 6 aba, so b∧a−1b−1a 6
1, in particular b+ ∧ a−1b−1− a = 1; for b = xy−1, x ∧ y = 1, one gets
1 = x ∧ a−1ya.

2. Every prime contains a prime ideal.

Proof: Let N :=
⋂
x x
−1Px be the largest normal subgroup in P ; if a∧b =

1 but b /∈ N then there is a y, y−1by /∈ P ; so x−1ax ∧ y−1by = 1, and
x−1ax ∈ P for all x, i.e., a ∈ N .
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3. Polar and minimal prime subgroups are normal (i.e., ideals).

Proof: A minimal prime subgroup satisfies P =
⋃
{x⊥ : 1 6 x /∈ P } =⋃

{ a−1x⊥a : 1 6 x /∈ P } = a−1Pa. Conversely, if minimal primes are
normal, then the radical is 1 (because every prime contains a minimal).

4. For any prime, either xP 6 Px or Px 6 xP .

The weakly abelian lattice groups satisfy ∀x > 1, y−1xy 6 x2; then convex
lattice subgroups are normal (if x ∈ H, |a−1xa| = a−1|x|a ∈ H).

2.4.1 Linearly Ordered Groups

when G = G+ ∪ G−, i.e., every element is comparable to 1; equivalently, a
lattice group without proper orthogonal elements x ⊥ y ⇒ x = 1 or y = 1;
or a lattice group all of whose convex subgroups are lattices. Every simple
representable group is linearly ordered.

Examples:

• Q+ with multiplication

• Free group on an alphabet, e.g. < a−1ba < b < aba−1 < a−1bba < bb
and pure braid groups.

• The lex product (lexicographic) of linear groups
←∏
i

Gi, e.g. Zn (not Archim-

edean).

• Torsion-less abelian groups can be made linear by embedding in QA (or
consider a maximal set such that P ∩ P−1 = { 1 }; if 1 6= a /∈ P ∪ P−1
then the larger monoids generated by P and a or a−1 do not satisfy this
condition; so (xan)−1 = yam, i.e., a−(m+n) = xy ∈ P , as well as ar+s ∈ P ;
hence a(m+n)(r+s) ∈ P ∩ P−1, so m = n = r = s = 0 and x = 1 = y; thus
P ∪ P−1 = X.)

• Z2 with usual addition and (0, 0) 6 (x, y) ⇔ αx 6 y (α /∈ Q); e.g. α =
√

2
gives (0, 0) < (−1,−1) < (0, 1) < (−1, 0) < (0, 2) < (−1, 1).

• Heisenberg group: Z3 with

a1b1
c1

 ∗
a2b2
c2

 :=

 a1 + a2
b1 + b2

c1 + c2 + a1b2

 and lexi-

cographic ordering; a non-abelian linearly ordered group.

• Pure braid group (using its free group ordering).

1. Linear groups are either discrete or order-dense (since if a < b is a gap so
are b−1a < 1 < a−1b).
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2. Every convex subgroup, including { 1 }, is prime (x ∧ y = 1 ⇒ x =
1 or y = 1), so C(G) is a linear order. A linear group with a maximal
convex subgroup is of the type [[a]].

3. If [xn, ym] = 1 (m,n 6= 0) then [x, y] = 1.

4. The center is an ideal.

5. The Archimedean relation ≺ is a coarser linear order on G: for any x, y
either x ≺ y or y ≺ x.

The regular subgroup not containing a is Pa = [1] ∪ · · · ∪ [b] = {x : |x| �
|a| }.

6. (Neumann) Every linearly ordered group is the image of a free linearly
ordered group.

7. (Mal’cev) ZG is embedded in a division ring.

2.5 Completely Reducible Lattice Groups

are lattice groups whose socle equals the group; i.e., G is the sum of simple
lattice groups. Every element has an irredundant decomposition x = a1 ∨ · · · an
where ai ∈ Xi.

The convex lattice subgroups satisfy ACC iff all such subgroups are principal
iff G has a finite basis with each a⊥⊥ satisfying ACC.

ACC lattice groups: they are complete, every element is compact.

2.6 Abelian Lattice Groups

They are representable since all prime subgroups are normal and rad(G) =⋂
P prime P = { 1 }; thus every abelian lattice group is a product of linearly

ordered abelian groups.
Hahn’s theorem: Embedded in a lex product of RA (where A is the number

of Archimedean classes).

2.6.1 Archimedean Linear Groups

These are the simple abelian lattice groups.

Proposition 2

Hölder’s embedding theorem

Every Archimedean linearly ordered group is embedded in R,+.

Proof: Fix a > 1 and let Lx := {m/n ∈ Q : am 6 xn }, Ux := {m/n ∈
Q : am > xn }, a Dedekind cut of Q, i.e., Lx ∪ Ux = Q, Lx ∩ Ux = ∅, Lx < Ux.
Define φ : G → R, x 7→ supLx = inf Ux; given m/n ∈ Lx, r/s ∈ Ly, i.e.,
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am 6 xn, ar 6 ys, either xy 6 yx when ams+nr 6 xnsyns 6 (xy)ns or yx 6 xy
when anr+ms 6 ynsxns 6 (xy)ns; so Lx + Ly ⊆ Lxy; similarly, Ux + Uy ⊆ Uxy,
so φ(xy) = φ(x) + φ(y). If φ(x) = 0 then for all m,n > 0, a−m 6 xn, i.e.,
1 6 x 6 1. Hence φ is a 1-1 morphism.

�

Proposition 3

The only order-complete linearly ordered groups are 0, Z and R.

Proof: Complete linear orders are Archimedean since 1 < x � y implies
α := supn x

n exists, so αx = x, a contradiction. If Z ⊂ R ⊂ R, then there is
0 < ε < 1, hence R is order-dense in R; its completion is R.

�

1. They are therefore abelian and can be completed.

2. Any morphism between Archimedean linear groups is of the type x 7→ rx
(as subgroups of R).

Proof: For φ 6= 0, let φ(a) > 0; if φ(x)
φ(a) < m

n < x
a then ma < nx so

mφ(a) < nφ(x) a contradiction; so φ(x)/x = r := φ(a)/a.
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Ordered Rings

3 Ordered Modules and Rings

An ordered ring is a unital ring with an order such that + is monotone, and
∗ is monotone with respect to positive elements, i.e., a, b > 0 ⇒ ab > 0.

An ordered module is an ordered abelian group X acted upon by an
ordered ring R such that for a ∈ R, x ∈ X,

a > 0, x > 0 ⇒ ax > 0

Hence a > 0 and x 6 y ⇒ ax 6 ay; similarly, a 6 b and x > 0 ⇒ ax 6 bx;
if a 6 0 then ax > ay (since ±a(y − x) > 0). For rings, a > 0 and b 6 c ⇒
ba 6 ca.

The morphisms are the maps that preserve +, ·, 6; module morphisms need
to preserve the action T (ax) = aTx. An ordered algebra is an ordered ring
which is a module over itself (acting left and right).

X+ is closed under +, ·, and uniquely determines the order on X, x 6 y ⇔
y−x ∈ X+; any subset P ⊆ R such that P+P ⊆ P , PP ⊆ P and P ∩(−P ) = 0
defines an order on R. (For X, replace with R+P ⊆ P .)

Examples:

• Z, Q, R with their linear orders. Z has a unique linear order (1 66 0, see
later). Q has a unique linear order that extends that of Z: for n > 0,
1
n + · · ·+ 1

n = 1, so 1
n > 0; so m/n > 0 for m,n > 0.

• Z with 2N > 0; Q with N > 0; C with R+ > 0.

• Z2 × Z with (0, 1), (1, 2) > 0.

• Q(
√

2) with 0 < 1 but
√

2 not comparable to 0 or 1.

• A commutative formally real ring (
∑N
n x

2
n = 0 ⇒ xn = 0) has a natural

(minimal) positive cone P :=
∑∏

R2 (finite terms). Equivalently, squares
are positive and there are no nilpotents. If R is formally real, then so are
R[x, y, . . .], RA, subrings (e.g. C(R)).

More generally, any ring with the property that finite sums of terms
a1 · · · a2n, where each ai occurs an even number of times, can be zero
only if each product is zero, has an order whose positives consist of such
sums (such as squares).

• Scaled ring : For any ordered ring/module, pick any invertible central
positive element λ, and let a ∗ x := λax; the new identity is λ−1.

• Any module with the trivial order X+ = 0. Every finite module, being a
finite group, can only have this order.
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• Hom(X), the morphisms of a commutative ordered monoid, with 0 6 φ ⇔
0 6 φ(x),∀x > 0, and φ(x) 6 0,∀x 6 0. It is pre-ordered, but ordered
when X = X+ +X−. Every ordered ring is embedded in such a ring, via
the map a 7→ φa where φa(x) := ax.

Sub-modules (e.g. left ideals) and sub-rings are automatically ordered; in
particular the generated sub-modules and sub-rings [[A]].

Products of ordered modules (rings) X × Y with

(x, y) > 0 ⇔ x > 0 and y > 0

and functions XA , with

f > 0 ⇔ f(x) > 0 ∀x ∈ A

are again ordered modules (rings). But R
←
× S is not, e.g. (0, 1), (1,−1) > 0 yet

(0, 1)((1,−1) = (0,−1) < 0.
Matrices Mn(R) with 0 6 T ⇔ Tij > 0,∀i, j (i.e., Mn(R+).
Polynomials R[x] with R[x]+ consisting of polynomials with (i) p(a) > 0 for

all a ∈ R, (ii) all coefficients are positive, R+[x], or (iii) lex ordering: lowest
order term is positive; apart from (iv) p =

∑
i q

2
i when formally real; note

(iv) ⇒ (i) ⇒ (iii). In Z[x], x satisfies (ii) but not (i) or (iv), x2 − x+ 1 satisfies
(i) but not (ii) or (iv).

Series R[[x]] and Laurent series R((x)) with lex ordering.
Group Algebras: More generally, R[C] with convolution and R[C]+ = R+[C].
If R acts on X and φ : S → R is a morphism, then S acts on X by s · x :=

φ(s)x.

1.
X+ X−

R+ + −
R− − +

So a ∈ R± ⇒ a2 > 0 and 0 6 a 6 b ⇒ a2 6 b2. In particular 1 6< 0
(else 1 < 0 ⇒ 12 > 0); for any idempotent e 6< 0, e 6> 1. But squares
need not be positive, e.g. in Z[x], (x− 1)2 = x2− 2x+ 1 is unrelated to 0;

in M2(Z),

(
0 1
−1 0

)2

= −I < 0.

2. 0 6 a 6 b and 0 6 x 6 y ⇒ ax 6 by.

In particular, 0 6 a, b 6 1 ⇒ ab 6 1.

a > 1 and x 6 y ⇒ ax 6 ay (since (a − 1)(y − x) > 0); a, b > 1 ⇒
ab > 1.

If ab = 0 for a, b > 0, then (a ∧ b)2 = 0.

If x+ y = 0 with x, y > 0 then x = 0 = y, i.e., x > 0, y > 0 ⇒ x+ y > 0.

Note that ax > 0, x > 0 6⇒ a > 0.
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3. Convex sub-modules give ordered-module quotients with

0 + Y 6 x+ Y ⇔ ∃y ∈ Y, x+ y > 0

Similarly, convex ideals for rings. For a discrete module, all sub-modules
are convex.

A sub-module is convex iff x, y > 0, x+ y ∈ Y ⇒ x, y ∈ Y . For example,
Annih(x); more generally [M : B] := { a ∈ R : aB ⊆ M } when M is a
convex sub-module and B > 0.

A convex ideal of Mn(R) is of the form Mn(I) with I a convex ideal.

4. Morphisms pull convex sub-modules (ideals) to convex sub-modules (ide-
als) T−1M , in particular kerT = T−10.

5. When 1 and 0 are incomparable, one can distinguish the quasi-positive
elements of X

a > 0 ⇒ ax > 0

They form an upper-closed sub-semi-module that contains X+; and closed
under · for R.

For any quasi-positive idempotent, eRe is a subring with (eRe)+ = eR+e.

Types of Ordered Modules/Rings:

• An ordered ring is reduced when it has no non-trivial positive/negative
nilpotents, i.e., a > 0 ⇒ a2 > 0.

• It is an ordered domain when it has no non-trivial positive/negative zero
divisors, i.e., a, b > 0 ⇒ ab > 0. Ordered domains are reduced.

• An ordered module is simple when it contains no proper convex sub-
modules. A left-simple ordered ring is an ordered domain, since ab =
0, b > 0 ⇒ Annih(b) = R.

• It is Archimedean when X,+ is an Archimedean group. An Archimedean
ring with 0 < 1 is left-simple, since if 0 6= a ∈ I then 1 6 n|a| ∈ I
and 1 ∈ I. Simple ordered modules, acted on by rings with R ≺ 1, are
Archimedean, as {x : x ≺ y } is a convex sub-module.

3.0.2 Lattice Ordered Rings/Modules

Hence X,+ is an abelian lattice group,

x+ y ∨ z = (x+ y) ∨ (x+ z)

Morphisms must preserve the operations +, ·, ∨. Note that an isomorphism is
a bijective morphism.

Examples:
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• Z[
√

2] with a+ b
√

2 > 0 ⇔ b 6 a 6 2b (more generally, any angled sector
less than π).

• Z2 with standard +,6 and (i) (a, b)(c, d) := (ac+bd, ad+bc), (ii) (a, b)(c, d) :=
(ac, ad+ bc+ bd).

• Any abelian lattice group acted upon by its ring of automorphisms, with
φ > 0 ⇔ φG+ ⊆ G+.
The bounded morphisms HomB(X) of a complete lattice group.

• M2(Z) with
(
a b
c d

)
> 0 ⇔ 0 6 c 6 a, 0 6 d 6 b. Then 0 66 1.

• The infinite matrices over Z with a finite number of non-zero entries; the
subring of upper triangular matrices.

• Group algebras F[G], with F[G]+ := F+[G].

Products X×Y and functions XA are again lattice ordered. Matrices Mn(R)
are lattice ordered rings when R is a lattice ordered ring.

Every subset generates a sub-lattice-ring [[A]].

1. Recall from abelian lattice groups: x+ := x ∨ 0, x− := x ∧ 0,

x = x+ + x− (x ∨ y)± = x± ∨ y± (−x)+ = −x−
|x| = x+ − x− = x ∨ (−x) |x+ y| 6 |x|+ |y| |−x| = |x|

−|x| 6 x 6 |x| |nx| = n|x| |x ∨ y| 6 |x|+ |y|
−(x ∨ y) = (−x) ∧ (−y) x ∨ y + x ∧ y = x+ y x ∧ y = 0 = x ∧ z ⇒ x ∧ (y + z) = 0

n(x ∨ y) =

{
nx ∨ ny, n > 0

nx ∧ ny, n 6 0
nx > 0 ⇔ x > 0

x ∨ y = (x− y)+ + y nx = 0 ⇔ x = 0

If |x| ∧ |y| = 0 then (x+ y)± = x± + y± and |x+ y| = |x|+ |y| = |x| ∨ |y|.
Morphisms: (Tx)+ = Tx+, T |x| = |Tx|.

2. If a > 0 then a(x ∨ y) > ax ∨ ay, a(x ∧ y) 6 ax ∧ ay;

If a 6 0 then a(x ∨ y) 6 ax ∧ ay, a(x ∧ y) > ax ∨ ay.

If x > 0 then (a ∨ b)x > ax ∨ bx, (a ∧ b)x 6 ax ∧ bx;

If x 6 0 then (a ∨ b)x 6 ax ∧ bx, (a ∧ b)x > ax ∨ bx.

If a, a−1 > 0 then a(x ∨ y) = ax ∨ ay and a(x ∧ y) = ax ∧ ay, since

ax, ay 6 z ⇔ x, y 6 a−1z. Note that
(
1 1
0 1

)
> 0 but

(
1 1
0 1

)−1
6> 0.

3. |ax| 6 |a||x|
Proof:

ax = (a+ + a−)(x+ + x−) 6 a+x+ − a+x− − a−x+ + a−x− = |a||x|
> −a+x+ + a+x− + a−x+ − a−x− = −|a||x|
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4. `-sub-modules are the convex sub-lattice-modules; they are the kernels of
morphisms, and X/Y is a lattice ordered module; similarly for `-ideals
and rings.

A sub-lattice-module is convex iff x ∈ Y, |y| 6 |x| ⇒ y ∈ Y .

An `-ideal which is a prime subgroup gives a quotient which is linearly
ordered.

5. First Isomorphism theorem: If T is a module morphism, then

X/ kerT ∼= imT via x 7→ Tx.

Proof: If 0 6 Tx then Tx = (Tx)+ = Tx+, so Tx− = 0 and x + kerT >
kerT . An order-isomorphism is a ∨-isomorphism.

6. If X = M +N , both `-submodules, then

X

M ∩N
∼=
X

M
× X

N

For `-sub-modules, X⋂
i Yi

⊂∼
∏
i
X
Yi

via x 7→ (x+ Yi).

7. A coarser relation than the Archimedean one is |x| 6 |a||y| for some a ∈ R.
Let

|A · Y | := {x ∈ X : |x| 6 |a1||y1|+ · · ·+ |an||yn|, ai ∈ A, yi ∈ Y, n ∈ N }

Note that |
∑
i aiyi| 6

∑
i |ai||yi|, so A · Y ⊆ |A · Y |.

The `-sub-module generated by a subset is [̂[Y ]] = |R · Y |, in particular if
Y is an sub-lattice-module then

[̂[Y ]] = {x ∈ X : |x| 6 |a||y|, a ∈ R, y ∈ Y }

e.g. ̂[[y1, y2]] = ̂[[|y1|+ |y2|]] so finitely generated modules are one-generated;
M ∨ N = {x : |x| 6 |a|(|y| + |z|), a ∈ R, y ∈ M, z ∈ N }. Similarly, the
generated convex ideal is

〈̂A〉 = { b : |b| 6 |r|(|a1|+ · · ·+ |an|)|s|, r, s ∈ R, ai ∈ A,n ∈ N }

The `-sub-modules form a complete distributive lattice.

8. The `-annihilator of a subset B ⊆ X is

Annih`(B) := { a ∈ R : |a||x| = 0,∀x ∈ B } ⊆ Annih(B)

is a left `-ideal of R. Similarly the `-zero-set of A ⊆ R is

Zeros`(A) = {x ∈ X : |a||x| = 0,∀a ∈ A } ⊆ Zeros(A)

is a convex lattice-subgroup (but not a module).
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9. For the lattice of `-ideals,

(a) I is an `-nilpotent ideal iff |In| = 0; it is nilpotent. If I is a nilpotent

left `-ideal, then so is 〈̂I〉 = |I ·R|.
(b) I is an `-nil ideal iff for x ∈ I, |x| is nilpotent.

(c) S is an `-semi-prime ideal iff |I · J | ⊆ S ⇒ I ∩ J ⊆ S
iff |x|R|x| ⊆ S ⇒ x ∈ S. A convex semi-prime ideal is `-semi-prime.

(d) P is an `-prime ideal iff |I · J | ⊆ P ⇒ I ⊆ P or J ⊆ P
iff |x|R|y| ⊆ P ⇒ x ∈ P or y ∈ P . A convex prime ideal is `-prime.

(e) P is an `-primitive ideal iff P is the `-core Annih`(R/I) (the largest
`-left-ideal) of some maximal `-left-ideal I.

10. Convex Radicals for Rings:

Nil` :=
∑

`-nil ideals,

Nilp` := {x : |x| supernilpotent } =
∑

`-nilpotent ideals.

Prime` :=
⋂
{P : `-prime ideal }, (the smallest `-semi-prime)

Jac` := {x : |x| quasi-nilpotent }

Nilp` ⊆ Prime` ⊆ Nil` ⊆ Jac`

Proof: Same as for rings, e.g. Prime` ⊆ Nil`: if |x| is not nilpotent then
there is an `-prime which is maximal in not containing any |x|n; so if
I, J 6⊆ P then |x|n ∈ |I+P |, |x|m ∈ ‖J +P |, hence |x|n+m ∈ |I+P | · |J +
P | ⊆ |(I + P ) · (J + P )| = |I · J + P |, ∴ I · J 6⊆ P , so P is `-prime and
|x| /∈ P .

11. Semi-prime Ordered Rings: when Prime`(R) = 0, equivalently, it contains
no proper `-nilpotent ideals, |In| = 0 ⇒ I = 0, or 0 is `-semi-prime

|a|R|a| = 0 ⇒ a = 0.

R/Prime` ⊂∼
∏

prime ordered rings.

12. Prime Ordered Rings: when 0 is `-prime, i.e., |I ·J | = 0 ⇒ I = 0 or J =
0; equivalently, for any left `-ideal, Annih`(I) = 0. Examples include
Mn(R) when R is a linearly ordered division ring.

13. A reduced ordered ring is embedded in a product of domains
∏
M R/M

where M are the minimal `-primes. A reduced prime ordered ring is a
domain.

14. If R is commutative, then ab = (a ∨ b)(a ∧ b), so a ∧ b = 0 ⇒ ab = 0;
in particular, a2 = (a+ + a−)2 = a2+ + a2− > 0, including 1 > 0. Thus a
commutative lattice ordered ring without nilpotents is formally real.

15. Recall the topology generated by By(x) for y > 0. A coarser topology is
that generated by Bay(x) for fixed y and a ∈ R+.
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3.1 Lattice Modules/Rings

A lattice module is a lattice-ordered module acted upon by a lattice-ordered
ring such that

a > 0 ⇒ a(x ∨ y) = ax ∨ ay
x > 0 ⇒ (a ∨ b)x = ax ∨ bx

The morphisms need to preserve +, ∗, ∨. A lattice ring is a lattice-ordered
ring which is a lattice module over itself.

Thus R+, ∗ is a lattice monoid.
Examples:

• Z2, Qn, e.g. (1, 0)(0, 1) = (0, 0).

• Vector lattices: a lattice ordered module acted upon by a linearly ordered
division ring, since a ∨ b = a or b, and a > 0 ⇒ a−1 > 0. A Riesz space
is a vector lattice over R.

• Archimedean lattice ordered rings, since x ∧ y = 0 ⇒ ax ∧ y 6 nx ∧ y 6
n(x ∧ y) = 0.

Sub-lattice-rings, images are again lattice-rings. Products, RA, its sub-
lattice ring C(X) when X is a T2 space; but not matrices Mn(R) or R[G].

1. a > 0 ⇒ a(x ∧ y) = ax ∧ ay, x > 0 ⇒ (a ∧ b)x = ax ∧ bx
a 6 0 ⇒ a(x ∨ y) = ax ∧ ay, x 6 0 ⇒ (a ∨ b)x = ax ∧ bx.

ax ∧ by 6 (a ∨ b)(x ∧ y) 6 ax ∨ by

2. Equivalently,

(a) |ax| = |a||x|,
(b) (ax)+ = a+x+ + a−x−, (ax)− = a+x− + a−x+

(c) a > 0 ⇒ ax+ ∧ (−ax−) = 0
x > 0 ⇒ a+x ∧ (−a−x) = 0

(d) a > 0 and x ∧ y = 0 ⇒ ax ∧ ay = 0,
x > 0 and a ∧ b = 0 ⇒ ax ∧ bx = 0

(e) a, b > 0 and x ∧ y = 0 ⇒ ax ∧ by = 0 = xa ∧ yb (for rings)
x, y > 0 and a ∧ b = 0 ⇒ ax ∧ by = 0

Proof: (e) 0 6 ax ∧ by 6 (a ∨ b)(x ∧ y) = 0. (e) ⇒ (d) ⇒ (c) trivial;
ax = (a+ + a−)(x+ + x−) = (a+x+ + a−x−) + (a+x− + a−x+); but
(a+x+ + a−x−) ⊥ (a+x− + a−x+), so (ax)+ = a+x+ + a−x−, etc.; hence
|ax| = (ax)+ − (ax)− = |a||x|. For a > 0, 2(ax)+ = ax+ a|x| = 2ax+, so
a(x ∨ y) = a(x− y)+ + ay = ax ∨ ay; similarly for (a ∨ b)x = ax ∨ bx.

Every lattice-ordered ring contains a lattice ring, namely { a ∈ R : x∧y =
0 ⇒ |a|x ∧ y = 0 = x|a| ∧ y }.
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3. Hence Annih`(B) = Annih(B), Zeros`(A) = Zeros(A). If M is a sub-
module, then Annih(M) is an `-ideal; if I is an ideal, then Zeros(I) is an
`-submodule.

4. |1|x = x = 1+x, 1−x = 0

Proof: (1 ∧ 0)x = x+ ∧ 0 + x− ∨ 0 = 0.

5. A⊥ is an `-submodule (or `-ideal) and [̂[A]] ∩A⊥ = 0; [̂[A]]
⊥

= A⊥.

Proof: If x ∈ [̂[A]] ∩A⊥, then |x| ∧ |x| 6 r(|a1|+ · · ·+ |an|) ∧ |x| = 0.

6. If v ∧ w = 0 for v ∈ V , w ∈W , then [̂[V ]] ∩ [̂[W ]] = 0.

For a vector lattice, if vi ∧ vj = 0 (non-zero) then
∑
i aivi > 0 ⇔ ai > 0.

Thus vi are linearly independent. Hence a finite dimensional vector lattice
has a finite group basis.

Proof: If a1 6 0, then 0 6 (−a1v1) ∧ v1 6 (a2v2 + · · · + anvn) ∧ v1, so
−a1v1 ∧ v1 = 0 and a1 = 0.

7. A convex sub-module of X × Y is of the form M ×N with M,N convex
sub-modules.

8. R/Annih(x) ∼= Rx for x > 0, via a 7→ ax.

9. An indecomposable lattice module is linearly ordered.

Proof: X = x⊥⊥+ ⊕ x⊥+, hence either x+ ∈ x⊥⊥+ = 0 or x− ∈ x⊥+ = 0.

10. Lattice modules and rings can be embedded in a product of linearly or-
dered modules/rings. (Equivalent to definition.)

Proof: The radical is 0 (as an abelian lattice group), so X ⊂∼
∏
P X/P via

x 7→ (x + P )P∈P ; the embedding is a lattice ring morphism. An `-prime

lattice ring is linearly ordered: 〈̂x+〉 · 〈̂x−〉 ⊆ 〈̂x+〉 ∩ 〈̂x−〉 = 0, so x+ = 0
or x− = 0.

11. Mn(R) acts trivially on a lattice module (Ax = 0), unless n = 1.

Proof: Suppose Mn(R) acts on a lattice module, hence on a linearly or-
dered module X; then E1jx 6 E2jx, say, so multiplying by Ei1 and Ei2
gives Eijx = 0.

Lattice Rings

12. 0 6 1, so R contains Z (unless R = 0), since 1+ = 1+1 = 1.

13. Let a⊕ := a ∨ 1, a	 := a ∧ 1, for a > 0. Then a = a⊕a	.

14. a ⊥ b ⇒ ab = 0. In particular a+a− = 0 and 1⊥ = 0.

Proof: a ∧ b = 0 ⇒ ab ∧ b = 0 ⇒ ab ∧ ab = 0.

The converse holds iff the lattice ring is reduced (since 0 = |ab| > (|a| ∧
|b|)2 ⇒ a ⊥ b).
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15. Squares are positive: a2 = |a|2 > 0 since a2 = (a+ + a−)2 = a2+ + a2− > 0.

(a) If a is invertible, then a > 0 ⇒ a−1 > 0 (since a−1 = (a−1)2a > 0).

(b) ab+ ba 6 a2 + b2 since (a− b)2 > 0.

(c) Idempotents satisfy 0 6 e 6 1. Any proper idempotent decomposes
X = eX⊕(1−e)X (eX is convex since 0 6 y 6 ex ⇒ (1−e)y = 0).

16. (a) |an| = |a|n (possibly n < 0)

(b) |a|n 6 1 ⇔ |a| 6 1, i.e., −1 6 an 6 1 ⇒ −1 6 a 6 1
|a|n > 1 ⇔ |a| > 1

(c) Nilpotents satisfy |a| � 1, since na is also nilpotent.

17. A⊥ +B⊥ ⊆ (AB)⊥

18. Idempotents are central.

Proof: Embed in linear ordered rings; then e = (0 or 1) (see later) so
commutes.

19. As Archimedean classes, ab − ba � a2 + b2. So an Archimedean lattice
ring is commutative.

Proof: Assume a linear order, 0 6 a 6 b; then nb = ka+r with 0 6 r < a;
so n(ab− ba) = a(nb)− (nb)a = [a, r], so n|[a, b]| = |[a, r]| 6 2a2 6 a2 + b2.

20. If A > 0 then its centralizer Z(A) is a sub-lattice-ring, e.g. the center
Z(R) = Z(R+).

21. If I is a convex left ideal then its core [I : R] = { a ∈ R : aR ⊆ I } ⊆ I is
an `-ideal.

22. Nilp` = Nil`, Niln := { a : an = 0 } are `-nilpotent ideals.

Proof: Assume linearly ordered; am = 0 = bn, 0 6 a 6 b ⇒ (a + b)n 6
(2b)n = 2nbn = 0; |ra| 6 |ar| ⇒ 0 6 |ra|n 6 |ar|n 6 |a||ra|n−1|r| 6
· · · 6 |a|n|r|n = 0, similarly for |ar| 6 |ra|. If |b| 6 |a| then 0 6 |bn| =
|b|n 6 |a|n = |an| = 0 hence convex. If a ∈ Nil`, then a ∈ Niln for some
n, so a ∈

∑
n Niln ⊆ Nilp`.

23. (Johnson) R/Nil` ⊂∼
∏
nRn linear domains.

24. Archimedean vector lattices over a field are isomorphic to Rn.

3.2 Linearly Ordered Rings

Equivalently, a lattice-ordered ring with x ∧ y = 0 ⇒ x = 0 or y = 0. They
are lattice rings since a(x ∨ y) = ax = ax ∨ ay (say).

Examples:

• Z2 or Q2 with lex ordering and (a, b)(c, d) := (ac, ad+ bc) or (a, b)(c, d) :=
(ad+ bc, bd); non-Archimedean.
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• Any commutative lattice-ordered domain, since x ∧ y = 0 ⇒ xy = 0 ⇒
x = 0 or y = 0.

• R[x], R[[x]], R((x)) with lex ordering. The subring of terms
∑M
n=−N anx

n.

• Ring of fractions is also linearly ordered (when commutative)

a/b 6 c/d ⇔ ad 6 bc (for b, d > 0)

Hence a commutative linearly ordered ring extends to a linearly ordered
field, e.g. Z to Q.

1. Equivalently, they are the indecomposable lattice rings (no proper idem-
potents).

Proof: For any idempotent, either e 6 (1− e) so e = e2 6 0 or (1− e) 6 e
so 1− e 6 0.

2. ax 6 ay ⇒ x 6 y if a > 0, else a 6 0 ⇒ x > y.

ax = 0 (a 6= 0) ⇒ |x| < 1 (else |x| > 1 ⇒ |a| 6 |a||x| = |ax| = 0).

3. Recall that linear orders have a natural T5 topology; which is connected
iff order-complete and without cuts or gaps.

4. Reduced linearly ordered rings are domains.

3.2.1 Linearly Ordered Fields

Examples:

• Q, R

• Q(
√

2) with (i)
√

2 > 0, (ii)
√

2 < 0.

• Hyperreal numbers: RN with (an) 6 (bn) ⇔ {n ∈ N : an 6 bn } ⊆ N ,
where N is a maximal non-principal filter of N; sequences need to be
identified to give an order. Then ε := (1, 12 ,

1
3 , . . .) is an infinitesimal with

inverse ω := (1, 2, 3, . . .). (This field is independent of N if the continuum
hypothesis is assumed.)

1. The prime subfield is Q.

2. x 7→ ax for a > 0 are precisely the (+,6)-automorphisms. The only
(+, ∗,6)-automorphism is trivial.

3. If x 6 y + a for all a > 0, then x 6 y (else x− y 6 a := (x− y)/2).
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4. A field can be linearly ordered ⇔ it can be lattice-ordered ⇔ it is formally
real.

Proof: A formally real field can have its positives P extended maximally
to Q, by Hausdorff’s maximality principle. For x /∈ Q, Q−Qx ⊇ Q is also
a positive set, so Q−Qx = Q, i.e., −x ∈ Q.

More generally a ring can be linearly ordered ⇔ proper sums of even prod-
ucts of elements cannot be zero (same proof). Note that for a division ring,
an even product is a product of squares (since axay = (ax)2(x−1)2xy =
· · · ).

5. A linearly ordered field is Archimedean ⇔ N is unbounded ⇔ Q is dense.
(FrQ is also dense unless empty.)

Proof: ∀x, x ≺ y ⇒ Ny is unbounded. If 0 6 x < y then (y − x)−1 < n
and 1

2nN is unbounded; pick smallest m
2n > x. So x < m

2n 6 x + 1
2n <

x+ y−x
2 < y.

6. The extension field F (a) ∼= F [x]/〈p〉 (p irreducible) can be linearly ordered,
if p changes sign. In particular when

(a) a2 > 0 in F

(b) p is odd dimensional

Proof: Let p be a minimal-degree (m) counterexample, i.e., F [x]/〈p〉 is
not formally real, so

∑
n p

2
n = 0 = pq (mod p) with pn 6= 0; q has degree

at most 2(m − 1) − m = m − 2. Since p(x)q(x) =
∑
n pn(x)2 > 0 yet

p(x1)p(x2) < 0, then q(x1)q(x2) < 0; decompose q = q1 · · · qr into irre-
ducibles, then q1(x1)q1(x2) < 0 say, and

∑
n p

2
n = pq = 0 (mod q1), still

not formally real. If a2 > 0 then x2 − a2 is irreducible in F and changes
sign from 0 to a2 + 1. If p(x) = xn(1 + an−1/x+ · · ·+ a0/x

n) is odd, then
for x large enough the bracket is positive, hence p(x) changes sign like xn.

7. (Neumann) Every linearly ordered division ring can be extended to include
R.

Proposition 4

Every Archimedean linearly ordered ring is embedded in R, except
R = 0.

Proof: R+ is embedded in R+ as lattice groups. The map x 7→ a · x is
a group automorphism on R+, hence of the type x 7→ rax; let r−a := −ra,
then a 7→ ra is a group morphism R+ → R+, so ra = sa, with s > 0, so
x · y = rxy = sxy, rx·y = s(x · y) = sxsy = rxry, hence x 7→ rx is an order-
ring embedding. (Thus Archimedean linear rings are characterized by their
+-group.)

�
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Hence, the only order-complete linearly ordered rings are 0, Z and R; and
the Dedekind-completion of any Archimedean linearly ordered field is R. Recall
that these are also Cauchy-complete. (Note: The Dedekind completion of the
hyperreal numbers is not closed under +, etc.)

3.2.2 Surreal Numbers

Every linearly ordered field is embedded in the surreal numbers.
Construction: A surreal number is a mapping from an ordinal number to

2 := { 1,−1 }. The first few examples are sequences:

−3 −2 − 3
2 −1 − 3

4 − 1
2 − 1

4 0 1
4

1
2

3
4 1 3

2 2 3
20 ()
21 (−1) (1)
22

(−1
−1
) (−1

1

) (
1
−1
) (

1
1

)
23
(−1
−1
−1

) (−1
−1
1

) (−1
1
−1

) (−1
1
1

) ( 1
−1
−1

) ( 1
−1
1

) ( 1
1
−1

) (1
1
1

)
The surreal numbers in 2N contain the real numbers, as well as ω := (1, 1, . . .),
ε := (1,−1,−1, . . .).

If A < B are sets of surreal numbers then (A|B) is the least surreal number
such that A < x < B; conversely, x = (Ax|Bx) where

Ax := {x|α : α < Dom(x), x(α) = −1 },
Bx := {x|α : α < Dom(x), x(α) = +1 }

e.g. 0 = (|), 3/2 = (1|2). For x = (A,B), y = (C,D), let

x < y ⇔ ∃c ∈ C, x 6 c or ∃b ∈ B, b 6 y
x+ y := ((A+ y) ∪ (x+ C) | (B + y) ∪ (x+D)) where A+ y := { a+ y : a ∈ A }
xy := ({ ay + xc− ac } ∪ { by + xd− bd } | { ay + xd− ad } ∪ { by + xc− bc })

where a ∈ A, b ∈ B, c ∈ C, d ∈ D

Then it can be shown these operations give a field: 0 +x = x, 1x = x, negatives
−x = (−B,−A), reciprocals exist, etc..
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